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Abstract— Intelligent robots designed to interact with hu-
mans in the real world need to adapt to the preferences of
different individuals. Preference-based reinforcement learning
(RL) has shown great potential for teaching robots to learn
personalized behaviors from interacting with humans with-
out a meticulous, hand-crafted reward function, replaced by
learning reward based on a human’s preferences between
two robot trajectories. However, poor feedback efficiency and
poor exploration in the state and reward spaces make current
preference-based RL algorithms perform poorly in complex
interactive tasks. To improve the performance of preference-
based RL, we incorporate prior knowledge of the task into
preference-based RL. Specifically, we decouple the task from
preference in human-robot interaction. We utilize a sketchy task
reward derived from task priori to instruct robots to conduct
more effective task exploration. Then a learned reward from
preference-based RL is used to optimize the robot’s policy to
align with human preferences. In addition, these two parts are
combined organically via reward shaping. The experimental
results show that our method is a practical and effective solution
for personalized human-robot interaction. Code is available at
https://github.com/Wenminggong/PbRL_for_PHRI.

I. INTRODUCTION

New frontiers in artificial intelligence and robotics hold
the potential to realize human and robot symbiosis. In human
social environments, robots aim to assist humans to live safer,
easier, and more independent in various contents [1]. To
achieve this goal, robots are developed to understand and
interact with humans in long-term, real-world settings, which
poses many challenges to learn from and for the diversity of
humanity. Human learning, development, and care all follow
nonlinear trajectories unique to each individual. Robots must
have personalized skills to adapt to different users.

Interactive machine learning offers a solution to person-
alized human-robot interaction [2]. Reinforcement learning
(RL) is one of the representative interactive machine learning
methods. Benefit from the high-capacity function approxi-
mate ability of deep learning, deep reinforcement learning
(DRL) has been applied in a range of challenging domains,
from games (e.g., Go [3] and Atari [4]) to robotics (e.g.,
Legged Robots [5]). However, the success of these methods
depends on hand-crafted reward functions. Unfortunately,
many tasks involve goals that are complex and poorly
defined, and an imprecise reward function will lead to reward
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hacking, that is the agent may maximize the defined reward
without performing the intended goal. What is worse, the
preferences of users can not be predicted in human-robot
interaction.

An alternative to avoid hand-crafted reward is preference-
based RL [6]–[8], which is a paradigm for learning from
nonnumerical feedback in sequential domains [9]. Instead
of maximizing long-term hand-crafted rewards, the agent
uses qualitative feedback, usually in the form of human
preferences between two robot trajectories, to learn the
desired strategy that matches human preferences. Learning a
reward function from human feedback and then optimizing
that reward function is one of the representative approaches
of preference-based RL [8], which has been scaled to off-
policy RL to improve sample efficiency [10]. However, these
preference-based RL algorithms are very inefficient since
they attempt to learn a continuous reward function from
binary human feedback. It is hard to obtain a good state-
space coverage with random exploration guided by human
preferences. Hence, it is intractable to train a robot to perform
complex interactive tasks and conform to human preferences
just by using preference-based RL.

In human-robot interaction, although the preferences of
humans can not be predicted, it is practical to obtain some
prior knowledge about the interactive task. For example,
how much force should a robot use to shake hands with
a human is uncertain, but we do know how to make the
robot perform a handshake with a human. Inspired by this
observation, we incorporate the prior knowledge of the task
into the preference-based RL to implement personalized
human-robot interaction. Specifically, we decouple the task
from preference in human-robot interaction. We utilize a
sketchy reward function derived from the prior knowledge of
the task to instruct the robot to conduct more effective task
exploration. Then a learned reward function from preference-
based RL is used to optimize the robot strategy to align with
human preferences. Our experiments demonstrate that the
proposed method significantly improves the performance of
preference-based RL methods (e.g., PrefPPO and PEBBLE
[10]) on a complex human-robot interaction task. In addition,
the proposed method is more robust to irrational human
feedback. The main contributions of this paper are twofold:

• We decouple the task from preference and incorporate
the prior knowledge of the task into preference-based
RL to improve its performance.

• Sufficient experimental results show that the proposed
method is an effective solution for personalized human-
robot interaction.

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 23-27, 2022, Kyoto, Japan

978-1-6654-7927-1/22/$31.00 ©2022 IEEE 848

20
22

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

79
27

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IR

O
S4

76
12

.2
02

2.
99

81
07

6

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 19,2024 at 07:39:56 UTC from IEEE Xplore.  Restrictions apply. 



The rest of the paper is organized as follows. After
discussing the related work in Section II, we systematically
introduce the proposed method in Section III. In Section
IV, the experiments involving human-robot interaction are
implemented and the results demonstrate the success of the
proposed method. Conclusions are given in Section V.

II. RELATED WORK

A. Personalized Human-Robot Interaction

Different individuals react differently to the same robot
behavior which reflects the personalization of humans. To
satisfy the personalized needs of humans, robots should
take unique information from every individual as input. The
unique information can be a current dynamic model of the
environment, with which we can plan an optimal policy for
robots. For example, personalized collaborative plans were
implemented for robot-assisted dressing via optimization
[11]. Considering personalized machine learning methods,
we can cluster users according to their characteristics, and
then train a separate machine learning model for each cluster
[12] or utilize multitask learning techniques [13]. However,
these methods require expert knowledge of the specific
field. Recently, RL shows its potential for personalized
human-robot interaction, which has been used to optimize
parameters of the interaction model to learn personalized
proxemics [14] and to help robots select an appropriate action
for tea-making [15]. The reward function reflects individual
preferences, which is the unique information of individuals
for robots. A meticulous design of the reward function is the
key to the success of this method. Instead of hand-crafted
reward, learning from pairwise preferences of human was
used to optimize personalized exoskeleton gait [16], [17].

B. Learning from Pairwise Human Feedback

Several works have successfully utilized pairwise pref-
erences feedback from humans to train agents [6], [7].
Learning a reward function from human feedback and then
optimizing that reward function is one of the potential
methods [18]. Following this basic approach, preference-
based reinforcement learning was scaled to more complex
domains including Atari games and robotics tasks in MuJoCo
by utilizing modern deep learning techniques [8]. In the
real world, human feedback is very expensive, hence poor
sample efficiency and feedback efficiency are the main
problems in preference-based RL. Recently, an off-policy
preference-based RL algorithm was proposed to improve
both sample efficiency and feedback efficiency via relabeling
history experience and unsupervised pre-training [10]. In
addition, incorporating expert demonstrations and pairwise
preferences has been proved to be an effective way to
improve the efficiency of preference-based RL [19], [20]. An
efficient exploration method was proposed by incorporating
uncertainty from the reward function [21]. To reduce the
need for human feedback without sacrificing performance,
several works were presented, and they trained a preference
predictor to provide pseudo preference labels [22]–[24].

trajectory τ𝑚 √

trajectory τ𝑛 ×
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a s
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Fig. 1. Illustration of our method. Guided by the sum of the sketchy task
reward r̂task and the learned mean reward r̂ϕmean , the robot optimizes its
interactive policy to align with human preferences.

III. OUR METHOD

A. Preference-based Reinforcement Learning

Reinforcement learning is a framework where an agent
learns from interaction with environments [25]. At each
timestep t, the agent observes a state st from the environment
and chooses an action at based on its current policy π(at|st).
In conventional RL framework, the environment gives a nu-
merical reward r(st, at) and the goal of the agent is to max-
imize the discounted return Gt =

∑T
k=0 γ

kr(st+k, at+k).
However, the preferences of humans can not be predicted

in human-robot interaction, there will be no hand-crafted
numerical reward existence. Hence, we consider preference-
based RL which replaces the numerical reward with the
preferences between two robot behavior segments [9]. For-
mally, a behavior segment σ is a sequence of observations
and actions {(sk, ak), (sk+1, ak+1), . . . , (sk+H , ak+H)}. In
human-robot interaction, the robot needs to perform a com-
plete behavior to serve humans and then gets the preferences
feedback from the human. Instead of using a short behavior
segment σ, we consider using the whole behavior trajec-
tory τ = {(s1, a1), (s2, a2), . . . , (sT , aT )} to query human
preferences in this paper. The robot demonstrates a pair of
behavior trajectories (τ0, τ1) to interact with human, human
indicates which trajectory is preferred (i.e., y = (τ0 ≻ τ1)
or (τ1 ≻ τ0)), that the two trajectories are equally preferred
y = (τ0 = τ1), or that the two trajectories are incomparable
(i.e., discarding this query). Each preference feedback is
stored in a dataset D as a triple (τ0, τ1, y). To overcome
the lack of numerical reward, preference-based RL utilizes
human preference feedback to learn a reward function. After
that, the learned reward function is used to guide the robot
to optimize the policy [8], [10], [20], [21], [24].

The reward function r̂ϕ and the policy πθ are both
parametrized by deep neural networks. These networks are
updated by three processes:

• step 1: The reward function r̂ϕ is optimized via super-
vised learning to fit the preference feedback received
from humans.

• step 2: The policy πθ interacts with the environment
to collect a set of trajectories {τ1, τ2, . . . , τ i} and it is
updated via conventional RL algorithms to optimize the
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sum of the learned reward r̂ϕ.
• step 3: The robot selects pairs of trajectories (τm, τn)

from the collected trajectory dataset, and performs them
to query human preferences.

1) Reward learning from human preferences: Intuitively,
the trajectories with more desirable behaviors should have
higher cumulative rewards. The learned reward function
needs to satisfy this criterion. Following the Bradley-Terry
model [26], we model the preference predictor of a pair of
trajectories based on the learned reward function r̂ϕ as

Pϕ[τ
i ≻ τ j ] =

exp
∑T

t=0 r̂ϕ(s
i
t, a

i
t)∑

k∈{i,j} exp
∑T

t=0 r̂ϕ(s
k
t , a

k
t )

, (1)

where τ i ≻ τ j denotes the event that the trajectory τ i

is preferable to the trajectory τ j . To align preference pre-
dictor with the preference feedback received from human,
preference-based RL algorithms translate updating reward
function to a binary classification problem. Specifically, the
reward function r̂ϕ parametrized by ϕ is updated to minimize
the following cross-entropy loss:

LReward = − E
(τ i,τj ,y)∼D

[
I{y = (τ i ≻ τ j)} logPϕ[τ

i ≻ τ j ]

+I{y = (τ j ≻ τ i)} logPϕ[τ
j ≻ τ i]

]
,

(2)
where D is the preference feedback dataset.

2) Optimizing the policy: Once the reward function r̂ϕ
has been optimized from human preferences, there is left
a conventional RL problem. Generally, we can train robots
with any existing RL algorithms. Depending on whether
the target policy is the same as the behavior policy, RL
algorithms can be divided into two categories, i.e., on-policy
algorithms (e.g., PPO [27]) and off-policy algorithms (e.g.,
SAC [28]). For on-policy algorithms, we just need to replace
the hand-crafted reward function with the learned reward
function r̂ϕ [8]. However, this method will not work well in
off-policy algorithms. A caveat is that the reward function
r̂ϕ may be non-stationary because we update it during
training. In off-policy algorithms, previous experiences in
the replay buffer are labeled with the previously learned
reward function. As a result, the learning process of off-
policy algorithms will be unstable. To handle this issue,
we can relabel all of the robot’s experience every time we
update the reward function r̂ϕ [10]. Compared to on-policy
algorithms, off-policy algorithms are more sample-efficiency
via reusing past experiences. To validate our approach more
fully, we construct our experiments on both on-policy and
off-policy algorithms in this paper.

3) Selecting queries: The goal of preference-based RL
is to train an agent to perform behaviors desirable to a
human using as little preference feedback as possible. During
training, all history trajectories are stored in an annotation
buffer B, and the robot should generate Nquery pairs of
trajectories to query human preferences at each feedback
session. What query strategy should the robot take to reduce
the burden on humans? Uniform sampling (i.e., picking
Nquery pairs of trajectories uniformly at random from the

buffer B) is the simplest method, while it is not efficient
enough in complex domains. Ensemble-based sampling is an
effective query strategy to solicit preferences to maximize
the information received [8], [10], [29]. In this paper, we
use the ensemble-based sampling strategy to select queries.
We fit q reward function {r̂ϕ1

, r̂ϕ2
, . . . , r̂ϕq

} as an ensemble,
and each reward function is trained on |D| triples sampled
from preference feedback dataset D with replacement. We
take their average as the ensemble result to support policy
optimization. For selecting queries, the robot first generate
the initial batch of Ninit pairs of trajectories Ginit uniformly
at random from the buffer B, then using each reward pre-
dictor in our ensemble to predict preferences {Pϕ1 [τ

m ≻
τn], . . . , Pϕq [τ

m ≻ τn]} from each pair (τm, τn). Finally,
selecting Nquery (Nquery ⩽ Ninit) pairs of trajectories
for which the predictions have the highest variance across
ensemble members (i.e., V ar{Pϕ1

[τm ≻ τn], . . . , Pϕq
[τm ≻

τn]}) to query human preferences.

B. Decoupling Task from Preference

Generally, binary preference feedback is less informative
than numerical rewards. Hence, preference-based RL algo-
rithms are more inefficient than conventional RL algorithms
with numerical rewards. The credit assignment of the reward
function is a tough challenge in long-episode human-robot
interaction. Besides, it is hard for preference-based RL to
obtain good state- and action-space coverage with random
exploration, especially in high-dimensional robotics tasks. To
improve the performance of preference-based RL in human-
robot interaction, we incorporate the prior knowledge of the
task into preference-based RL. The key idea of our method
is to decouple the task from preference in human-robot inter-
action. We define a sketchy reward function to communicate
the desirable task behavior, and the sketchy reward function
is used to instruct the robot to conduct more effective task
exploration. After the robot has mastered the task knowledge,
we utilize the learned reward function from preference-based
RL to optimize the robot strategy to align human preferences
in reduced strategy space. Specifically, we incorporate the
defined sketchy task reward into preference-based via reward
shaping. The framework of our method is shown in Fig. 1.

1) Hypothesizes of task and preference in personalized
human-robot interaction: In personalized human-robot in-
teraction, the robot not only needs to perform interactive
behavior with human successfully but also needs to find a
personalized strategy to align human preferences. For exam-
ple, in a handshake task, the robot not only needs to perform
a physical act of shaking hands with a human but also needs
to decide to use how much force to execute it. In this paper,
we call these two goals as the goal of task and the goal
of preference. Furthermore, the goal of task and the goal of
preference are often coupled in the real world. To achieve the
goal of preference, the robot should utilize preference-based
RL to learn personalized skills from interacting with humans.
The reason conventional RL methods are not applicable
is that the preferences of humans can not be predicted in
advance. However, it is difficult for preference-based RL to
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train a robot to achieve both goals simultaneously. Although
the preferences of humans can not be predicted, we can
obtain some prior knowledge about the task. For example, we
know that the robot’s hand should move close to the hand of a
human in a handshake task. Inspired by this, we decouple the
task from preference in human-robot interaction. According
to the prior knowledge of the task, we define a sketchy
reward function r̂task to communicate the desirable task
behavior. In conclusion, our method is based on these two
hypothesizes:

• Hypothesis of preference: the preferences of humans can
not be predicted and the robot should learn personalized
skills from interacting with humans.

• Hypothesis of task: we can obtain some prior knowledge
of the task and we can define a sketchy reward function
r̂task according to the prior knowledge.

2) Decoupled preference-based RL with task priori: In
preference-based RL, once the reward functions {r̂ϕl

}ql=1

are optimized from human preferences, the robot is usually
trained with conventional RL algorithms guided by the
learned mean reward function:

r̂ϕmean =
1

q

q∑
l=1

r̂ϕl
. (3)

To incorporate the prior knowledge of the task into
preference-based RL, we combine the defined sketchy task
reward r̂task with the learned mean reward r̂ϕmean , and train
a robot’s policy to optimize the sum of these two reward
functions:

rtrain(st, at) = λtr̂task(st, at) + r̂ϕmean
(st, at), (4)

where λt ⩾ 0 is the task reward rate that can be used to
determine the trade-off between the goal of task and the
goal of preference at current training timestep t. However, the
hand-crafted reward function r̂task is imprecise, it can be just
viewed as an approximation of the ground truth task reward.
As a result, if λt remains to be a large number throughout
the whole training process, the introduced task reward may
bias the desirable strategy. To avoid this situation, we use a
reward rate that decreases over training time:

λt =
T − t

T
λ0, (5)

where T is the maximum training timestep, and λ0 is the
initial task reward rate which is also a hyperparameter in
this paper. The full procedure of our method is summarized
in Algorithm 1.

IV. EXPERIMENTS

To evaluate the performance of the proposed method on
personalized human-robot interaction, we design our experi-
ments on a physical simulation environment [30], particularly
answering the following questions:

• Q1: Can the proposed method improve the performance
of state-of-the-art preference-based RL methods in per-
sonalized human-robot interaction via decoupling task
from preference?

Algorithm 1: Decoupled Preference-based RL with
Task Priori

1 Initialize the robot’s policy πθ and the reward
functions {r̂ϕl

}ql=1

2 Define a sketchy task reward r̂task according to the
prior knowledge of the task

3 Initialize the frequency of human feedback K and
the preference feedback dataset D ← ∅

4 for each training timestep t do
5 //INTERACTION WITH ENVIRONMENT
6 Collect st+1 by excuting at ∼ πθ(at|st)
7 Store transition {st, at, st+1, r̂task(st, at)} in B
8 // REWARD LEARNING
9 if t%K == 0 then

10 Selecte Nquery pairs of trajectories from
history experience buffer B using
Ensemble-based sampling

11 Query human preferences y and store them
D ← D ∪ {(τm, τn, y)}Nquery

i=1

12 Update reward functions {r̂ϕl
}ql=1 according

to Equation (2)
13 end
14 // POLICY OPTIMIZATION
15 for each gradient step do
16 Sample minibatch from history buffer

{sj , aj , r̂task(sj , aj)}Nj=1

17 Label rewards {r̂ϕmean(sj , aj)}Nj=1, update λt

and compute rtrain
18 Train policy with reward rtrain
19 end
20 end

• Q2: Does the proposed method have high robustness to
utilize imperfect human feedback?

• Q3: How does the reward rate λt influence the perfor-
mance?

Fig. 2. The feeding task in Assistive-Gym.

A. Setups

We evaluate our method on a feeding task (as shown in
Fig. 2) from Assistive-Gym, a physics simulation framework
for assistive robotics [30]. In the simulation environment,
a Baxter robot holds a spoon with small spheres repre-
senting food on the spoon and it must bring this food
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Fig. 3. An environmental model with human preferences. In Assistive-
Gym, the environment can provide a human preference reward rH via
estimating the mental state of humans which is affected by the physical
state of humans. The output reward r is a combination of human preference
reward rH and robot’s task reward rR.

to a human’s mouth without spilling it. Furthermore, the
behavior performed by the robot should align with human
preferences. For example, the robot should not apply large
forces to the human body, or the robot should take its actions
slowly and interpretably. To model human preferences, a
novel RL environmental model [30] was presented as shown
in Fig. 3. At each time step, the environment computes a
human preference reward rH based on how well the robot
is satisfying the human’s preferences. Then combining this
human preference reward rH with the robot’s task reward
rtask to output an overall reward r. Specifically, the human
preference reward rH is defined as

rH = ω ⊙ [Cd(s), Ce(s), Cv(s), Cf (s),

Chf (s), Cfd(s), Cfdv(s)],
(6)

where ω represents a vector of weights for each preference,
and C.(s) represents the cost of deviating from human
preference in the current state s. In this paper, we use
ω = [0.5, 0.5, 0.25, 0.3, 0.1, 2.5, 10.0], and we define the
penalty terms as

• Cd(s): cost for long distance from robot’s end effector
to the target assistance location (e.g., human mouth in
our paper).

• Ce(s): reward for successfully feeding food to the
human mouth.

• Cv(s): cost for high robot’s end effector velocities.
• Cf (s): applying force away from the target assistance

location.
• Chf (s): applying high forces near the target.
• Cfd(s): spilling food on the human.
• Cfdv(s): food entering mouth at high velocities.

To verify the efficacy of preference-based RL to learn
from non-numerical feedback, we assume that the robot
can not observe the ground truth reward r. Instead, similar
to prior works [8], [10], [20], the robot learns to interact
with humans by getting preference feedback from a scripted
human teacher. The scripted human teacher can provide
preferences between robot’s trajectories according to the true,
underlying reward r. Since the preferences of the scripted
human teacher exactly reflect the ground truth reward of the
environment, we can evaluate the performance of our method
by measuring the true average return. Besides, we can get the

underlying human preference reward rH to evaluate whether
our method aligns with human preferences.

For our method, we incorporate the prior knowledge of
the task into preference-based RL. In the feeding task, the
goal of task of the robot is to feed food to a human’s mouth
using a spoon. We define the sketchy task reward as

r̂task = −∥d∥2, (7)

where d is the distance from the spoon to the human
mouth. We remark that our method can be combined with
any preference-based RL algorithms by replacing the policy
optimization procedure of its backbone method. To validate
our method more comprehensively, we choose state-of-the-
art on-policy algorithms (e.g., PrefPPO [10]) and off-policy
algorithms (e.g., PEBBLE [10]) as our backbone algorithms
in this paper.

B. Performance of our method

To evaluate the performance of our method, the com-
parison with various other methods is presented, including
conventional RL methods (i.e., RL with true reward and RL
with sketchy task reward) and state-of-the-art preference-
based RL methods (i.e., PrefPPO and PEBBLE). The settings
of all methods are listed as follows:

• RL with true reward: The robot can get ground truth
reward r from the environment, and we utilize conven-
tional RL algorithms (i.e., PPO and SAC) to train the
robot to maximize the expected ground truth return.

• RL with sketchy task reward: The robot can only get the
sketchy task reward r̂task from the environment, and we
utilize PPO and SAC to train the robot to maximize the
sketchy task return.

• Preference-based RL: The robot learns a reward func-
tion according to the preference feedback from the
scripted human teacher, and then uses the learned re-
ward function to optimize its policy. Specifically, we
implement PrefPPO and PEBBLE in this paper.

• Decoupled prefrence-based RL (our method): We de-
fine a sketchy task reward r̂task and combine it with
the learned reward function from preference-based RL.
Choosing PrefPPO and PEBBLE as our backbone al-
gorithms, we propose two decoupled preference-based
RL algorithms respectively, called Decoupled PrefPPO
and Decoupled PEBBLE.

We compare our method with the baseline of RL with
true reward, our aim here is not to show that our method
can outperform RL with the true reward, but rather to do
nearly as well. For all preference-based algorithms, we set
q = 3 and train an ensemble of reward functions according to
Equation 2. 50000 queries are generated during the training
process. In particular, we consider λ0 = 1.0 and λ0 =
15.0 for Decoupled PrefPPO and Decoupled PEBBLE. The
experimental results with mean and standard deviation across
3 runs are reported in Fig. 4 and Fig. 5.

As shown in Fig. 4 and Fig. 5, our methods can achieve
the performance almost as well as RL with the true reward in
the feeding task from Assistive-Gym, although our methods
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Fig. 4. The learning curves of on-policy case on feeding task. The experimental results are measured on the ground truth return, task success rate, and
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Fig. 5. The learning curves of off-policy case on feeding task. The experimental results are measured on the ground truth return, task success rate, and
ground truth preference return. The solid line and shaded regions represent the mean and standard deviation, respectively across 3 runs.

have no access to numerical reward information. Compared
to preference-based RL algorithms, we decouple task from
preference in personalized human-robot interaction, and uti-
lize a sketchy task reward and a learned reward function
to guide the robot to explore well for the task and human
preferences respectively. The results show that our methods
can improve the performance of preference-based RL on
complex interactive tasks and have been proved to be a
successful attempt for personalized human-robot interaction.
Besides, although a sketchy task reward seems useless for
conventional RL, it provides great help in our methods.

C. Robustness of our method

In the real world, many possible irrationalities are affecting
a human’s preferences feedback. Hence, it is unrealistic to
evaluate our method using an ideal scripted human teacher.
We consider more realistic models of scripted human teach-
ers designed by [29]:

• Stochastic preference model: A stochastic model is
defined to support noisy preferences from human:

P [τm ≻ τn;β, γmy] = exp(β

T∑
t=1

γT−t
my r(smt , amt ))/

(
exp(β

T∑
t=1

γT−t
my r(smt , amt )) + exp(β

T∑
t=1

γT−t
my r(snt , a

n
t ))

)
(8)

where γmy ∈ (0, 1] is a discount factor to model myopic
behavior, β is a rationality constant, and P [τm ≻ τn]
denotes the probability of preferring trajectory m than
trajectory n.

• Myopic behavior: Humans are sometimes myopic,
hence a human teacher may remember and focus on the
behavior at the end of the trajectory he watched. The
myopic behavior is modeled by introducing a weighted
sum of rewards with a discount factor γmy in Equation
8.

• Skipping queries: If both trajectories are not desired
behaviors, a human would like to mark them as in-
comparable and discard this query. This behavior is
modeled by skipping a query if the sums of rewards
over both trajectories are smaller than skip threshold,
i.e., maxk∈{m,n}(

∑
t r(s

k
t , a

k
t )−Rmin) < (Ravg(πt)−

Rmin)δskip, where Ravg(πt) is the average return of
current policy πt, and Rmin is the minimum return.

• Equally preferable: If two trajectories are equally good,
a human would like to mark them as equally preferable.
Hence, if two trajectories have similar sum of rewards
(e.g., |

∑
t r(s

m
t , amt ) −

∑
t r(s

n
t , a

n
t )| < (Ravg(πt) −

Rmin)δequal), an uniform distribution (0.5, 0.5) should
be provided.

• Making a mistake: Humans may make errors sometimes.
To reflect this, the preferences are flipped with the
probability of ϵ.

To evaluate the robustness, we implement our method us-
ing various realistic scripted human teachers, their properties
are listed in Table. I. We consider one modification to the
oracle scripted human teacher at a time. The experimental
results are shown in Fig. 6 and Fig. 7. In both on-policy and
off-policy cases, our methods can still achieve good perfor-
mance, although the scripted human teachers are imperfect.
This shows that our methods are robust to irrational human
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Fig. 6. The learning curves of PrefPPO and Decoupled PrefPPO using various scripted human teachers. The experimental results are measured on the
ground truth return, task success rate, and ground truth preference return.
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Fig. 7. The learning curves of PEBBLE and Decoupled PEBBLE using various scripted human teachers. The experimental results are measured on the
ground truth return, task success rate, and ground truth preference return.

feedback and have great potential to be scaled to interacting
with real humans in the physical world.

TABLE I
REALISTIC SCRIPTED HUMAN TEACHERS USED IN THIS PAPER.

Type β γmy ϵ δskip δequal

Oracle ∞ 1 0 0 0
Noisy 1 1 0 0 0

Mistake ∞ 1 0.1 0 0
Skip ∞ 1 0 0.1 0

Equal ∞ 1 0 0 0.1
Myopic ∞ 0.99 0 0 0

D. Influences of the reward rate λt

λt is an important parameter, and is used to determine the
trade-off between the sketchy task reward and the learned
reward. To investigate the influences of λt, we design two
decay strategies of λt in our experiments, e.g., linear strategy
and non-linear strategy.

• Linear strategy: λt decreases linearly over training time.
As shown in Equation 5, λ0 is the only hyperparameter
needs to be determined.

• Non-linear strategy: Similar to [21], λt decreases by an
exponential decay schedule of λt = (1− ρ)tλ0, where
ρ is a decay rate.

For linear strategy, we consider using λ0 ∈ {1.0, 5.0, 10.0}
in Decoupled PrefPPO and using λ0 ∈ {10.0, 15.0, 20.0}
in Decoupled PEBBLE. For non-linear strategy, we con-
sider using ρ = 0.00001, λ0 ∈ {5.0, 10.0, 30.0} and ρ =
0.000001, λ0 ∈ {5.0, 10.0, 30.0} in both Decoupled PrefPPO
and Decoupled PEBBLE. We report the experimental results

in Fig. 8 and Fig. 9. To help robot explore task more
effectively and acquire task skills more quickly, we should
make sure that the sketchy task reward r̂task works over a
long period of time, e.g., using linear strategy or non-linear
strategy with ρ = 0.000001. However, it is still necessary
for us to adjust λ0 carefully.

V. CONCLUSIONS

Our goal is to develop a robot that has personalized skills
to adapt to different users in human-robot interaction. In this
paper, we present decoupled preference-based RL, a novel
preference-based RL method with prior knowledge of the
task. We decouple the task from preference in personalized
human-robot interaction. We utilize a sketchy task reward
derived from the prior knowledge of the task to help the robot
explore the task more effectively, and use a learned reward
from preference-based RL to optimize the robot’s policy to
align with human preferences. We combine them organically
via reward shaping. The experimental results show that
the proposed method can achieve good performance on a
complex interactive task and is an effective solution for
personalized human-robot interaction.
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