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 A B S T R A C T

Sports data mining is becoming increasingly vital in modern competitive sports, driven by the need for 
athletes to continuously enhance their performance. Traditional methods of analyzing sports data rely heavily 
on expert experience and manual effort, which can be inefficient and unreliable. With advancements in 
artificial intelligence (AI), sports data is now being processed autonomously, providing more quantitative 
insights and more comprehensive analysis. This paper focuses on the role of tactics in sports, particularly 
in badminton, and explores the potential of using AI to enhance badminton tactical decision-making. We 
investigate the application of offline reinforcement learning (Offline RL) to develop tactical policies from pre-
collected datasets, addressing challenges including algorithm design and offline policy evaluation. Specifically, 
we propose a new variant of conservative Q-learning (CQL), tailored for the hybrid action space to train 
tactical policies using the integrated offline dataset Shuttle. To evaluate these policies, we develop a preference-
based reward model that aligns with tactical preferences, offering an alternative to traditional offline policy 
evaluation methods. Our computer-based experimental results and analysis demonstrate that the proposed 
method achieves higher average rewards than all baseline methods and the behavior policy used for data 
collection. This underscores the potential of the proposed method to enhance badminton tactical decision-
making and offer athletes more effective tactical recommendations. Code and data are available at https:
//github.com/Wenminggong/Offline_RL_for_Badminton.
1. Introduction

Sports data mining is increasingly playing a crucial role in modern 
competitive sports. With ‘‘faster, higher, and stronger’’ as the slogan 
of competitive sports, and only one winner in each match, athletes 
must undergo extensive targeted training to enhance their performance 
continuously. Traditionally, coaches, analysts, and experts have relied 
on their professional experience to analyze sports data and design 
training programs for athletes. This often involves reviewing match 
videos to identify athletes’ weaknesses or adjusting training focus based 
on physical test data. However, this method is relatively unreliable and 
inefficient, as it heavily depends on expert experience and requires 
significant manual effort (Cossich et al., 2023). Nowadays, with the 
advancement of artificial intelligence (AI) technology, sports data is 
being collected, processed, and analyzed by AI models (Srilakshmi 
and Joe, 2023; Wang et al., 2024b; Fernando et al., 2019). This 
autonomous process generates more quantitative and comprehensive 
reports (Lin et al., 2024). Consequently, more rigorous training and 
decision-making recommendations produced by AI models to maximize 
winning chance is becoming the future trend.

Commonly, tactics and technical skills are two of the most crucial 
aspects of a match (Kolman et al., 2019). Tactics represent high-level 
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strategies designed to achieve specific goals in a particular sport. Tech-
nical skills, on the other hand, refer to the ability to control the body to 
execute specific movements. Although the effectiveness of tactics varies 
depending on the opponent, technical skills are generally considered to 
be more closely tied to an individual athlete. In this paper, we will focus 
on tactics, investigating how to leverage advanced AI technologies 
to make tactical decision-making to enhance an athlete’s chances of 
winning.

Particularly, our work focuses on badminton, as it is one of the 
most widely recognized and representative competitive sports. In a 
badminton match, two players or two teams (each consisting of two 
members) compete by alternately hitting a shuttlecock to score points 
against each other. The process of hitting involves a series of tactical 
decisions (Wang et al., 2023b). For instance, the athlete must determine 
the type of shot to execute, such as a net shot or a smash, and decide 
on the optimal placement of the shuttlecock. Additionally, after re-
turning the shuttlecock, the athlete must decide on his/her subsequent 
positioning to prepare for the next shot. Currently, in academia, AI 
models are primarily applied in badminton for match analysis and 
stroke or tactical prediction (Wang et al., 2022; Chang et al., 2023; Lin 
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et al., 2024). These approaches commonly employ supervised learning 
to summarize match situations or predict future shots based on existing 
data. Works focused on situation summarization and analysis play a 
supporting role in badminton tactical decision-making, as they still 
require human experts and coaches to derive effective tactical policies 
from the summarized information. To address the inherent inefficiency 
and potential instability of this human-dependent process, this work 
aims to develop a human-free model that functions as a direct tactical 
generator. By leveraging such a model, we seek to eliminate human 
involvement in tactical analysis and mining, thereby reducing human 
workload and offering more efficient and stable support for badminton 
tactical decisions. Although studies addressing stroke or tactical predic-
tion can be used to generate future strokes or tactics, they are generally 
trained to replicate behaviors present in the dataset, which often limits 
their ability to produce superior tactics for enhancing athlete perfor-
mance. Therefore, this work attempts to explore a novel approach for 
generating tactics that outperform those contained in the dataset. 

Offline reinforcement learning (Offline RL) as a subset of AI, has 
recently gained significant attention due to its successes in various 
domains, such as healthcare applications (Nambiar et al., 2023; Zhang 
et al., 2023b), chip design (Lai et al., 2023), and robotics (Shah et al., 
2023). Offline RL (also known as batch RL) is an approach that learns 
from a pre-collected static dataset without any online interaction with 
the environment (Levine et al., 2020). It offers a potential solution 
to the challenges posed by impractical online interactions in the real 
world of reinforcement learning (RL). From this point of view, Offline 
RL is ideally suited for mining badminton tactics, as it does not require 
online interaction in either real-world settings or badminton simulators. 
Besides, offline RL has been demonstrated to be capable of achieving 
a better policy than the behavioral policy used to collect the training 
data (Fujimoto et al., 2019). However, two significant challenges arise 
when applying Offline RL to badminton tactics mining: modifying the 
existing Offline RL algorithm to adapt to the hybrid action space of 
badminton tactics, and effectively using offline datasets to evaluate the 
learned policies.

Badminton tactical decision-making is a typical hybrid action-space 
problem that involves both discrete tactical actions and continuous 
tactical actions. While classical Offline RL algorithms are designed for 
either discrete action-space problems or continuous action-space prob-
lems, which cannot be applied to badminton tactical decision-making 
directly. To address this challenge, we select the advanced Offline RL 
algorithm Conservative Q-Learning (CQL) (Kumar et al., 2020) and 
modify it to accommodate the hybrid action space. Specifically, we 
follow the approach in Delalleau et al. (2019) by decomposing the ac-
tion into discrete and continuous components, while assuming that the 
continuous action component depends on the selected discrete action 
and that continuous actions are mutually independent. Consequently, 
we derive a new variant of CQL termed CQL with Hybrid Action Space.

The challenge of effectively evaluating learned policies using offline 
datasets is referred to as offline policy evaluation (OPE) (Qin et al., 
2022). Despite the proposal of numerous OPE methods, their effec-
tiveness in real-world applications remains unverified. The success of 
these methods is thought to be influenced by the task, the collected 
data, and the learned policy (Fu et al., 2021). Evaluating OPE methods 
involves comparing the estimated return with the true return obtained 
from a simulator or the real world. Consequently, existing OPE methods 
lack guaranteed reliability as policy evaluators when only pre-collected 
offline data is available. Therefore, this paper does not utilize OPE 
methods for policy evaluation. The objective of the OPE method is 
to estimate a policy’s long-term utility (i.e., 𝑄𝜋 (𝑠, 𝑎) or 𝑉𝜋 (𝑠)) using a 
pre-collected offline dataset, which is challenging. Instead, we focus on 
estimating a policy’s short-term reward (i.e., 𝑟(𝑠, 𝑎)), aiming to identify 
a myopic optimal policy. While this approach does not yield the long-
term optimal policy, the myopic optimal policy can still guide athletes’ 
tactical decision-making for the subsequent single step. To develop 
a reward model, we employ preference-based RL to align with the 
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preferences of tactical actions. Preference-based RL is a framework for 
learning from pairwise preference feedback (Christiano et al., 2017), 
and has recently shown success in domains such as robotics (Liu and 
Chen, 2022) and large language models (Ouyang et al., 2022). The 
preferences for tactical actions (e.g., preferring the action sequence of 
the winner over that of the loser in a rally) naturally arise from the 
offline dataset and are used as an optimization objective to train the 
reward model.

Specifically, we combine two existing badminton datasets, Shuttle-
Set (Wang et al., 2023b) and ShuttleSet22 (Wang et al., 2023a), into 
a larger dataset referred to as Shuttle in this paper. Using Shuttle, we 
train tactical decision-making policies with the proposed CQL with Hy-
brid Action Space and four other baselines. Concurrently, we develop a 
reward model to align with the preferences of tactical actions and use 
this model to evaluate the learned tactical decision-making policies by 
estimating their average reward. The experimental results demonstrate 
that the reward model generalizes well to the test set. According to the 
reward model, all the learned tactical policies achieve higher average 
rewards than the behavior policy used to generate the offline data. 
Particularly, CQL with Hybrid Action Space delivers the best perfor-
mance, highlighting its superiority in enhancing badminton tactical 
decision-making. The main contributions of this work are concluded 
as follows:

• To the best of our knowledge, this work is the first attempt to 
explore the potential of using Offline RL to enhance badminton 
tactical decision-making.

• Instead of viewing badminton tactical decision-making as a turn-
based sequence decision problem, we formulate it as a player-
based Markov Decision Process (MDP), offering a standard frame-
work for RL. Furthermore, to accommodate the hybrid action 
space inherent in badminton tactical decision-making, we develop 
a variant of the offline RL algorithm: CQL with Hybrid Action 
Space. We demonstrate that this variant can be effectively applied 
to real-world badminton tactical decision-making scenarios.

• Based on offline data, we propose to use a preference-based 
reward model to evaluate the trained tactical policies. Although 
this model evaluates only the myopic optimality of a policy, it 
serves as a viable alternative to existing OPE methods, which lack 
guaranteed reliability.

• Experimental results and analysis indicate that the tactical policy 
derived from CQL with Hybrid Action Space achieves significantly 
higher average rewards than that of the behavior policy used 
to generate the offline data and other baselines, which shows 
the potential value of this approach to be applied for badminton 
athletes’ tactical training and recommendation.

The rest of the paper is structured as follows. Firstly, we discuss 
the related works in Section 2 and present the problem statements and 
modeling in Section 3. Then, we systematically introduce the proposed 
method tailored to the hybrid action space of badminton tactics and 
preference-based offline policy evaluation in Section 4 and Section 5, 
respectively. In Section 6, the experiments are detailed, with the results 
and discussions showing Offline RL has the potential to enhance bad-
minton tactical decision-making. Section 7 presents the limitations of 
this work and the corresponding future research directions. Conclusions 
are given in Section 8.

2. Related works

In this section, we start by exploring recent applications of AI tech-
nologies in badminton, highlighting advancements in game analysis 
and stroke or tactical prediction, while also noting their limitations in 
active decision-making. We then discuss the development of Offline RL 
and its potential for enhancing tactical decision-making in badminton. 
Following this, we examine methods for OPE, which are crucial for 
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assessing learned policies when neither online nor simulator inter-
actions are possible. Finally, we delve into preference-based reward 
learning, focusing on leveraging pairwise preferences to develop a 
reward function, which has the potential to replace traditional OPE 
methods and address their reliability issues.

2.1. Badminton data mining

Various AI technologies have been employed for game analysis and 
stroke or tactical prediction in badminton. Leveraging advanced com-
puter vision, the court, players, and shuttlecock can be autonomously 
and accurately detected in videos, with the shuttlecock’s movement 
being effectively tracked (Yang et al., 2024; Chu and Situmeang, 2017). 
These detection and tracking capabilities allow for the automatic seg-
mentation of videos into distinct sets and rallies, enabling the removal 
of break times or transitional video clips (Huang et al., 2022). Addition-
ally, match data, such as player scores and shot location distributions, 
can be automatically summarized (Lin et al., 2024). Furthermore, 
virtual reality (VR) technology facilitates the reconstruction of 3D 
game views, enhancing the comprehensive analysis of game details (Lin 
et al., 2024). The advancement and application of these AI technologies 
offer numerous benefits, including automated large-scale data collec-
tion (Wang et al., 2023b,a), improved viewing experience during live 
broadcasts, and more effective training and match preparation for 
athletes and coaches. Although current methods can facilitate bad-
minton tactical decision-making, they primarily serve as support tools. 
A coach or expert is still needed to refine and finalize effective tactical 
decisions that can help athletes win matches, using the data sum-
marized by the AI models. To minimize reliance on human experts, 
it is valuable to train AI models to generate effective tactical deci-
sions directly from offline data. To gain insights into tactical usage, 
AI models have been developed to classify tactical types or predict 
forthcoming tactics. Specifically, support vector machines (SVM) were 
utilized for stroke classification (Chu and Situmeang, 2017) and trans-
former encoder–decoder models were used to predict future strokes and 
landing positions based on previous rally actions (Wang et al., 2022; 
Ibh et al., 2024). Additionally, a graph-based forecasting model was 
proposed to further predict movement positions (Chang et al., 2023). 
To predict future strokes, landing positions, and movement positions 
simultaneously, a strong hierarchical imitation learning model was em-
ployed (Wang et al., 2024a). While such predictive models are capable 
of generating tactical decisions, their training is often oriented toward 
replicating the strategies within the dataset. This makes it difficult 
for them to produce superior tactics that effectively enhance athlete 
performance, as they are not inherently optimized for creating novel 
winning strategies.

2.2. Offline RL

RL offers an online learning paradigm, which encounters significant 
challenges when online interaction is impractical. To address this, 
Offline RL was introduced (Levine et al., 2020). Offline RL follows a 
data-driven learning paradigm, relying solely on previously collected 
offline data. Although off-policy RL algorithms can learn from offline 
data naturally, they often struggle to learn effectively from entire 
offline datasets due to a serious issue: distributional shift (Levine 
et al., 2020). For instance, although the soft actor-critic (SAC) algo-
rithm (Haarnoja et al., 2018) can utilize data collected by previous 
policies to update the current policy, it fails to learn on static and 
offline data (Kumar et al., 2019). To mitigate this, several algorithms 
have been proposed. Fujimoto et al. introduced a batch-constrained 
RL algorithm that forces the policy to behave closely to behaviors of 
the given data by restricting the action space within a subset of the 
given data (Fujimoto et al., 2019). Kumar et al. devised conservative 
Q-learning (CQL), which incorporates a simple Q-value regularizer into 
the standard Bellman error objective to reduce value overestimation 
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caused by distributional shift (Kumar et al., 2020). To balance im-
proving the behavior policy and minimizing deviation from it, implicit 
Q-learning (IQL) was developed, utilizing a state-conditional upper 
expectile to estimate the optimal Q-value in that state (Kostrikov et al., 
2021). To enhance policy robustness and minimize model bias, dy-
namics models were incorporated into Offline RL for policy evaluation 
during training (Swazinna et al., 2021). Another way to address the 
challenge of learning without online interaction is by modeling the RL 
problem as a sequence generation problem. This approach leverages 
high-capacity sequence prediction models, such as Transformer, to 
generate action sequences that yield high rewards. Notable examples 
include the decision transformer (Chen et al., 2021) and the trajectory 
transformer (Janner et al., 2021). The decision transformer conditions 
an autoregressive model on the expected return, past states, and actions 
to generate future actions that achieve the expected return, while 
the trajectory transformer employs beam search to generate future 
actions. With advancements in effective Offline RL algorithms, Offline 
RL has been increasingly applied to real-world decision-making prob-
lems. Shah et al. introduced the first Offline RL system for robotic 
navigation, capable of reaching distant goals (Shah et al., 2023). In 
treatment optimization, where active interaction is restricted, Offline 
RL has been used to develop effective policies for the treatment of 
diabetes and sepsis (Nambiar et al., 2023) and the recommendation of 
ventilator parameters (Zhang et al., 2024). For chip placement, Offline 
RL has been employed to learn a transferable placement policy that 
enhances placement quality (Lai et al., 2023). Inspired by these suc-
cessful applications, this paper explores the potential of using Offline 
RL in badminton tactical decision-making.

2.3. Offline policy evaluation

Policy evaluation is crucial not only for selecting the optimal 
learned policy for deployment in online systems but also for assessing 
the effectiveness of policy learning algorithms, thereby facilitating 
their development. In the context of Offline RL, policy evaluation 
must be conducted using solely offline collected data, without any 
online interaction. To address this, various methods have been devised 
to estimate the expected return of the learned policy 𝜋. Fitted Q-
Evaluation (FQE) directly fits a neural network to estimate the expected 
return by bootstrapping from 𝑄(𝑠′, 𝜋(𝑠′)) (Le et al., 2019). A model-
based approach considers learning dynamics and reward on transitions, 
utilizing simulated trajectories generated by the learned policy under 
the dynamics model to compute the policy’s return (Zhang et al., 
2021). Additionally, importance sampling conducted by a learned 
behavior policy can be used to estimate the return. Kostrikov and 
Nachum utilized self-normalized step-wise importance sampling for 
this purpose (Kostrikov and Nachum, 2020). To reduce estimation 
variance, Thomas and Brunskill performed weighted doubly-robust 
policy evaluation (Thomas and Brunskill, 2016). Importance weights 
can also be computed without learned behavior policies, using a saddle-
point objective (Yang et al., 2020) or a variational power iteration 
algorithm (Wen et al., 2020). However, existing OPE algorithms do not 
consistently perform well across a range of simulated tasks (Fu et al., 
2021). Furthermore, in a near real-world benchmark (i.e., NeoRL), 
current OPE methods struggle to select the optimal policy (Qin et al., 
2022). Therefore, it is essential to explore alternative methods for 
offline policy evaluation.

2.4. Preference-based reward learning

Preference-based RL is a framework for learning from pairwise 
preference feedback without predefined numerical rewards. One rep-
resentative method involves learning a reward function from pairwise 
feedback to replace handcrafted numerical rewards, followed by policy 
optimization based on this learned reward function (Christiano et al., 
2017). Typically, pairwise feedback is derived from human preferences, 
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Fig. 1. Illustration shows a badminton rally consisting of four strokes. From a bird’s-eye view, Player A and Player B are positioned on opposite sides of the 
court, each returning two strokes to form the rally. The court is drawn to scale, reflecting the actual dimensions of a badminton court, with white lines indicating 
the boundaries and a black line representing the net.
requiring at least one human to label preferences between two agent 
actions or behaviors. Due to the high cost of human feedback in 
real-world scenarios, poor sample and human feedback efficiency are 
significant challenges in preference-based RL. To address these issues, 
an off-policy preference-based RL algorithm was introduced, utilizing 
relabeled historical experiences and unsupervised pre-training (Lee 
et al., 2021). Additionally, integrating expert demonstrations and pair-
wise feedback has also proven effective in enhancing the efficiency 
of preference-based RL (Ibarz et al., 2018; Palan et al., 2019). A 
high-efficiency exploration method was developed by considering un-
certainty from the reward function (Liang et al., 2022). Recently, 
to accommodate non-Markovian rewards, a neural architecture using 
transformers to model human preferences, known as the Preference 
Transformer, was proposed (Kim et al., 2023). These advancements 
have facilitated the application of preference-based RL in areas such 
as Atari games (Christiano et al., 2017; Ibarz et al., 2018) and human–
robot interaction (Liu and Chen, 2022). Notably, this approach has been 
shown successful in fine-tuning large language models to match human 
preferences and intentions (Ouyang et al., 2022), attracting significant 
attention with the success of large language models like ChatGPT. 
In a badminton match, there is a natural preference for the tactical 
behaviors of the winner over those of the loser. This preference enables 
the development of a reward function that can serve as an alternative 
to classical OPE methods for evaluating tactical policies.

3. Problem formulation

In this paper, we focus exclusively on the single-player game of bad-
minton, despite the sport also encompassing doubles matches with two 
teams of two members each. Typically, a badminton match comprises 
two or three sets, with victory awarded to the player who first wins 
two sets. Each set includes a minimum of 21 rallies, where two players 
alternately return strokes to form a rally. The player who wins a rally 
earns one point, and the first to reach 21 points claims the set. As shown 
in Fig.  1, there is an example of a rally consisting of four strokes, where 
Player A initiates the service and Player B ultimately scores the point 
after four alternating stroke returns. This alternating stroke process is 
referred to as a turn-based sequential decision process (Wang et al., 
2022). Clearly, a player’s decision-making encompasses both tactical 
decision-making and the execution of technical skills. In this paper, we 
concentrate on the tactical decision-making aspect and disregard the 
execution of professional skills necessary to implement the intended 
tactics.1 To formally define the tactical decision process, we designate 

1 In reality, tactics represent higher-level behaviors that require athletes 
to control their bodies to perform specific movements associated with these 
tactics. However, in this paper, we focus solely on tactical decision-making and 
omit the physical execution process. In other words, we assume that athletes 
can flawlessly execute any given tactics.
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Player A as the serving player and Player B as Player A’s opponent, 
using 𝐴𝐵 to represent a match between Player A and Player B. A 
rally is denoted as , assuming the match comprises 𝑛 rallies, we have 
𝐴𝐵 = {𝑖}𝑛𝑖=1. Furthermore, the 𝑖th rally is composed of a sequence 
of strokes, represented as 𝑖 = {𝑆𝑡𝐴1 , 𝑆𝑡

𝐵
2 , 𝑆𝑡

𝐴
3 ,…}𝑖. In essence, a stroke 

is a decision-making process where the player selects an appropriate 
action based on his/her current state, thus a stroke can be expressed as 
a state–action pair, i.e., 𝑆𝑡𝑤𝑡 = (𝑠𝑡𝑢𝑟𝑛𝑡 , 𝑎𝑡𝑢𝑟𝑛𝑡 )𝑤, where 𝑤 represents Player 
A or Player B, and 𝑖 = {(𝑠𝑡𝑢𝑟𝑛1 , 𝑎𝑡𝑢𝑟𝑛1 )𝐴, (𝑠𝑡𝑢𝑟𝑛2 , 𝑎𝑡𝑢𝑟𝑛2 )𝐵 , (𝑠𝑡𝑢𝑟𝑛3 , 𝑎𝑡𝑢𝑟𝑛3 )𝐴,…}𝑖. 
According to Wang et al. (2024a), the state 𝑠𝑡𝑢𝑟𝑛 comprises the current 
position coordinates of the active player and his/her opponent, repre-
sented by 𝑠𝑡𝑢𝑟𝑛 = (𝑝𝑐𝑝, 𝑝𝑐𝑜), where ⋅𝑝 and ⋅𝑜 are used to denote specific 
attributes of the active player and his/her opponent, respectively. The 
action 𝑎𝑡𝑢𝑟𝑛 includes the shot type executed by the player, the intended 
landing position of the shuttle, and the player’s subsequent move-
ment position, represented by 𝑎𝑡𝑢𝑟𝑛 = (𝑠𝑡𝑝, 𝑙𝑝𝑝, 𝑚𝑝𝑝). In this paper, all 
positions are continuous two-dimensional coordinates represented by 
(𝑥, 𝑦),2 and 10 shot types are defined by domain experts to distinguish 
the strokes (Wang et al., 2022), with details provided in Table  1.

However, the turn-based sequential decision-making process in-
volves two agents taking actions alternately. To further formulate this 
problem as a MDP, we focus on the decision-making of one player 
in a rally, treating the other player’s actions as part of the state of 
the decision-making player. This MDP is referred to as a player-based 
MDP in this paper. Specifically, the player-based MDP is defined as 
a tuple ( ,, 𝑇 , 𝑟, 𝛾)𝑤, where 𝑤 ∈ {𝐴,𝐵} denotes the player under 
consideration. Here,  is a set of states. Each state 𝑠𝑝𝑙𝑎𝑦𝑒𝑟 ∈  in-
cludes not only the current position coordinates of the player and 
his/her opponent but also the opponent’s last action, i.e., 𝑠𝑝𝑙𝑎𝑦𝑒𝑟𝑡 =
(𝑠𝑡𝑢𝑟𝑛𝑡 , 𝑎𝑡𝑢𝑟𝑛𝑡−1 ) = (𝑝𝑐𝑝,𝑡, 𝑝𝑐𝑜,𝑡, 𝑠𝑡𝑜,𝑡−1, 𝑙𝑝𝑜,𝑡−1).3  is a set of actions. Each 
action 𝑎𝑝𝑙𝑎𝑦𝑒𝑟 ∈  corresponds to a turn-based action, represented as 
𝑎𝑝𝑙𝑎𝑦𝑒𝑟𝑡 = (𝑠𝑡𝑝,𝑡, 𝑙𝑝𝑝,𝑡, 𝑚𝑝𝑝,𝑡). Typically,  is a hybrid action space with 
discrete stroke types and continuous two-dimensional coordinates. To 
simplify the expression, unless otherwise specified, (𝑠𝑡, 𝑎𝑡) in the fol-
lowing text refers to (𝑠𝑝𝑙𝑎𝑦𝑒𝑟𝑡 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟𝑡 ). The transition function 𝑇  describes 
the probability distribution in the form 𝑇 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), which transitions 
current state 𝑠𝑡 into next state 𝑠𝑡+1. 𝑟 ∶  × → R defines the reward 
function. In this paper, we define 𝑟 as follows: 

𝑟(𝑠𝑡, 𝑎𝑡) =

{

0 𝑡 ≠ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙
±1 𝑡 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

. (1)

2 The specific definitions of the continuous two-dimensional coordinates 
will be given in Section 6.1.

3 In the turn-based sequential decision process, assuming that the 𝑡th stroke 
is executed by Player A, i.e., 𝑆𝑡𝐴𝑡 = (𝑠𝑡𝑢𝑟𝑛𝑡 , 𝑎𝑡𝑢𝑟𝑛𝑡 )𝐴, then the (𝑡−1)-th stroke must 
have been executed by Player B, i.e., 𝑆𝑡𝐵𝑡−1 = (𝑠𝑡𝑢𝑟𝑛𝑡−1 , 𝑎

𝑡𝑢𝑟𝑛
𝑡−1 )

𝐵 . At time frame 𝑡, 
Player A is the active player, so (𝑠𝑡𝑜,𝑡−1, 𝑙𝑝𝑜,𝑡−1, 𝑚𝑝𝑜,𝑡−1) is used to represent the 
opponent’s action of Player A (i.e., the action of Player B) at time frame 𝑡−1. 

Additionally, we omit 𝑚𝑝𝑜,𝑡−1 because 𝑚𝑝𝑜,𝑡−1 is equivalent to 𝑝𝑐𝑜,𝑡.
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Table 1
Shot types and their meanings.
 Shot type Descriptions  
 short service Serve that crosses over the net and lands close to the short service line.  
 long service Serve that arcs high and lands deep in the opponent’s backcourt.  
 net shot Gentle shot that positions the shuttlecock near the net.  
 clear Overhead shot where the player hits the shuttlecock from one end of the court to the opposite end.  
 push/rush Shot pushed from near the net to reach the backcourt, or a downward shot from near the net designed to land quickly.  
 smash Quick, downward-angled shot executed with an overhand motion.  
 defensive shot Shot taken when the opponent hits the smash or drive.  
 drive Swift and flat shot that travels just above the net, serving both offensive and defensive purposes.  
 lob Defensive shot usually executed from the front of the court by pushing the shuttlecock high and deep to the back of the 

opponent’s court.
 

 drop Shot that positions the shuttlecock near the net, often to force the opponent to move or to set up the next play.  
Fig. 2. Pictorial illustration of classic online RL versus offline RL. In online RL, the policy 𝜋𝑘 is continuously updated using streaming data collected by 𝜋𝑘
itself through ongoing environment interaction. In contrast, offline RL relies solely on a fixed dataset collected in advance by some behavior policy 𝜋𝛽 . The 
training process utilizes only this offline data without any further interaction with the environment, and the trained policy is deployed only after training is fully 
completed.
This implies that only the terminal step has a non-zero reward: the re-
ward is 1 if the decision-making player scores a point, and -1 otherwise. 
𝛾 ∈ (0, 1] is a reward discount factor. According to this definition, a 
turn-based rally can be divided into two player-based trajectories, such 
that 𝑖 = {𝜏𝐴, 𝜏𝐵}𝑖, where
𝜏𝑤 = {(𝑠𝑝𝑙𝑎𝑦𝑒𝑟1 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟1 , 𝑟1)𝑤, (𝑠

𝑝𝑙𝑎𝑦𝑒𝑟
2 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟2 , 𝑟2)𝑤

,… , (𝑠𝑝𝑙𝑎𝑦𝑒𝑟𝑇 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟𝑇 , 𝑟𝑇 )𝑤}, 𝑤 ∈ {𝐴,𝐵}. (2)

Based on the defined player-based MDP, our goal is to identify an 
optimal policy, denoted as 𝜋∗, that maximizes the expected long-term 
discounted rewards (Sutton and Barto, 2018): 
𝜋∗ = argmax

𝜋
E𝑎𝑡∼𝜋(𝑎𝑡|𝑠𝑡)

[

∑𝑇
𝑡=0 𝛾

𝑡𝑟(𝑠𝑡, 𝑎𝑡)
]

. (3)

As illustrated in Fig.  2, the difference between the classical online RL 
and offline RL is presented. The absence of both online interaction and 
a simulator prevents classical online RL methods from being directly 
applied to train tactical policies. Specifically, we only have access to 
a pre-collected dataset  = {(𝑠𝑡, 𝑎𝑡, 𝑠′𝑡 , 𝑟𝑡)} derived from match records, 
where 𝑠′𝑡 denotes the state at time 𝑡+ 1. Therefore, Offline RL becomes 
the suitable approach for training tactical policies. Our objective is to 
derive an optimal policy 𝜋∗ and evaluate its performance using this 
offline dataset. Once obtained, the optimal policy 𝜋∗ can function as 
an automated badminton tactic generator, supporting athlete training 
and performance enhancement.

4. Offline RL with hybrid action space

4.1. RL preliminaries

One representative approach to optimizing the RL objective in Eq. 
(3) involves estimating either a state-value function or a state–action 
value function. The state-value function 𝑉𝜋 (𝑠𝑡) represents the expected 
discounted cumulative reward obtained by following policy 𝜋 starting 
5 
from state 𝑠𝑡, while the state–action value function 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) represents 
the expected discounted cumulative reward obtained by following pol-
icy 𝜋 starting from the state–action pair (𝑠𝑡, 𝑎𝑡). Formally, these value 
functions are defined as (Sutton and Barto, 2018): 

𝑉𝜋 (𝑠𝑡) = E𝜏∼𝑝𝜋 (𝜏|𝑠𝑡)

[ 𝑇
∑

𝑡′=𝑡
𝛾 𝑡

′−𝑡𝑟(𝑠𝑡′ , 𝑎𝑡′ )

]

, (4)

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = E𝜏∼𝑝𝜋 (𝜏|𝑠𝑡 ,𝑎𝑡)

[ 𝑇
∑

𝑡′=𝑡
𝛾 𝑡

′−𝑡𝑟(𝑠𝑡′ , 𝑎𝑡′ )

]

, (5)

where 𝜏 = (𝑠𝑡, 𝑎𝑡,… , 𝑠𝑇 , 𝑎𝑇 ) denotes a trajectory consisting of a se-
quence of states and actions sampled according to policy 𝜋, and 𝑝𝜋 (⋅)
represents the trajectory distribution. In the Offline RL setting, the 
dataset  typically does not contain all possible state transitions. We 
therefore define the empirical Bellman operator as (Kumar et al., 2020): 

̂𝜋𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾E𝑎′∼𝜋(𝑎′|𝑠′),𝑠′∼𝑇 (𝑠′|𝑠,𝑎)[𝑄(𝑠′, 𝑎′)]. (6)

Standard RL algorithms generally alternate between two key steps 
to obtain an optimal policy: policy evaluation and policy improve-
ment (Sutton and Barto, 2018). These steps can be formulated as (Ku-
mar et al., 2020): 
𝑄̂𝑘+1 ← argmin

𝑄
E𝑠,𝑎,𝑠′∼

[

(̂𝜋̂𝑘 𝑄̂𝑘(𝑠, 𝑎) −𝑄(𝑠, 𝑎))2
]

, (7)

𝜋̂𝑘+1 ← argmax
𝜋

E𝑠∼,𝑎∼𝜋(𝑎|𝑠)
[

𝑄̂𝑘+1(𝑠, 𝑎)
]

, (8)

where 𝑄̂ and 𝜋̂ denote the estimated state–action value function and 
its corresponding optimal policy, respectively.

4.2. Conservative Q-learning with hybrid action space

Badminton tactical decision-making involves both discrete and con-
tinuous tactical behaviors, classifying it as a hybrid action-space prob-
lem. In this section, we focus on the advanced Offline RL algorithm: 



M. Liu et al. Engineering Applications of Artiϧcial Intelligence 164 (2026) 113395 
conservative Q-learning (CQL) (Kumar et al., 2020) and develop a 
variant of CQL specifically adapted for the hybrid action space.

The distributional shift between the learned policy and the policy 
that collected the data is one of the major challenges of Offline RL. 
Applying existing value-based off-policy RL algorithms directly in an 
offline setting often leads to overestimation of the value function 
because of bootstrapping from out-of-distribution actions and errors in 
function approximation. To learn a conservative estimate of the value 
function, CQL was proposed (Kumar et al., 2020) to provide a lower 
bound on the true values. To establish a lower bound for the state-
value function in a policy 𝜋(𝑎|𝑠), such that E𝜋(𝑎|𝑠)[𝑄̂𝜋 (𝑠, 𝑎)] ≤ 𝑉𝜋 (𝑠), 
we can introduce an additional regularization term during the policy 
evaluation step (Kumar et al., 2020), as follows:
𝑄̂𝑘+1 ← argmin

𝑄
𝛼𝑐𝑞𝑙(E𝑠∼,𝑎∼𝜋(𝑎|𝑠)[𝑄(𝑠, 𝑎)] − E𝑠∼,𝑎∼𝜋𝛽 (𝑎|𝑠)[𝑄(𝑠, 𝑎)])

+ 1
2
E𝑠,𝑎,𝑠′∼[(̂𝜋̂

𝑘
𝑄̂𝑘(𝑠, 𝑎) −𝑄(𝑠, 𝑎))2], (9)

where 𝜋𝛽 (𝑎|𝑠) represents the behavior policy used to collect the dataset 
, and 𝛼𝑐𝑞𝑙 ≥ 0 is a trade-off factor. To reduce computational cost, the 
one-step policy evaluation is further derived as follows (Kumar et al., 
2020):

𝑄̂𝑘+1 ← argmin
𝑄
𝛼𝑐𝑞𝑙E𝑠∼[log

∑

𝑎
exp(𝑄(𝑠, 𝑎)) − E𝑎∼𝜋𝛽 (𝑎|𝑠)[𝑄(𝑠, 𝑎)]]

+ 1
2
E𝑠,𝑎,𝑠′∼[(̂𝜋̂

𝑘
𝑄̂𝑘(𝑠, 𝑎) −𝑄(𝑠, 𝑎))2]. (10)

CQL is compatible with any off-policy RL algorithms. In this work, 
we concentrate on the soft actor-critic algorithm (SAC) (Haarnoja 
et al., 2018). Taking entropy regularization into account during policy 
evaluation, the policy evaluation step is presented as follows: 
𝑄̂𝑘+1 ← argmin

𝑄
𝛼𝑐𝑞𝑙E𝑠∼[log

∑

𝑎
exp(𝑄(𝑠, 𝑎)) − E𝑎∼𝜋𝛽 (𝑎|𝑠)[𝑄(𝑠, 𝑎)]]+

1
2
E𝑠,𝑎,𝑠′∼[(𝑟(𝑠, 𝑎) + 𝛾(E𝑎′∼𝜋̂𝑘(𝑎′|𝑠′)[𝑄̂𝑘(𝑠′, 𝑎′)]

+𝛼𝑒𝑛(𝜋̂𝑘(𝑎′|𝑠′))) −𝑄(𝑠, 𝑎))2],

(11)

where 𝛼𝑒𝑛 is a temperature parameter used to balance the trade-off be-
tween policy entropy and reward, and (𝜋) denotes the policy entropy. 
Besides, the policy improvement can be derived as follows (Haarnoja 
et al., 2018): 
𝜋̂𝑘+1 ← argmin

𝜋
E𝑠∼[−𝛼𝑒𝑛(𝜋(𝑎|𝑠)) − E𝑎∼𝜋(𝑎|𝑠)[𝑄̂𝑘+1(𝑠, 𝑎)]]. (12)

As discussed in Section 3, we consider a hybrid action space com-
prising discrete stroke types and two kinds of continuous
two-dimensional coordinates: the intended landing position of the 
shuttle and the player’s subsequent movement position. For simplicity, 
we denote the discrete and continuous parts of the action as 𝑎𝑑 and 𝑎𝑐 , 
respectively. Intuitively, we assume that the continuous action com-
ponent depends on the chosen discrete action, and that the intended 
landing position of the shuttle and the player’s subsequent movement 
position are independent. According to Delalleau et al. (2019), the 
policy can be decomposed as follows: 
𝜋(𝑎|𝑠) = 𝜋(𝑎𝑑 |𝑠)𝜋(𝑎𝑐 |𝑠, 𝑎𝑑 )

= 𝜋(𝑠𝑡𝑝|𝑠)𝜋(𝑙𝑝𝑝|𝑠, 𝑠𝑡𝑝)𝜋(𝑚𝑝𝑝|𝑠, 𝑠𝑡𝑝).
(13)

Furthermore, the policy entropy in Eqs. (11) and (12) can be calculated 
as follows (Delalleau et al., 2019): 

(𝜋(𝑎|𝑠)) = (𝜋(𝑎𝑑 |𝑠)𝜋(𝑎𝑐 |𝑠, 𝑎𝑑 )) = (𝜋(𝑎𝑑 |𝑠))+
∑

𝑎𝑑
𝜋(𝑎𝑑 |𝑠)(𝜋(𝑎𝑐 |𝑠, 𝑎𝑑 )).

(14)

To prevent one of these two entropies from overshadowing the other, 
we can employ two weighted factors 𝛼𝑒𝑛𝑑  and 𝛼𝑒𝑛𝑑 , to promote explo-
ration for both discrete and continuous actions, respectively (Delalleau 
et al., 2019). 
(𝜋(𝑎|𝑠)) = 𝛼𝑒𝑛𝑑 (𝜋(𝑎𝑑 |𝑠)) + 𝛼𝑒𝑛𝑐

∑

𝑎𝑑
𝜋(𝑎𝑑 |𝑠)(𝜋(𝑎𝑐 |𝑠, 𝑎𝑑 )). (15)

For clarity, CQL with Hybrid Action Space is detailed in Algorithm 
1.
6 
Algorithm 1: CQL with Hybrid Action Space
1 Initialize Q-function 𝑄𝜃 , and policy 𝜋𝜙.
2 for each training timestep 𝑡 do
3 //POLICY EVALUATION
4 Updating the Q-function 𝑄𝜃 by taking gradient steps on the 

objective outlined in Equation (11).
5 // POLICY IMPROVEMENT
6 Enhancing the policy 𝜋𝜙 by taking gradient steps on the 

objective outlined in Equation (12).
7 end 

5. Preference-based offline policy evaluation

5.1. Myopic policy evaluation

In Offline RL settings, where online interaction is limited or unavail-
able, traditional Off-Policy Evaluation (OPE) algorithms such as Fitted 
Q-Evaluation (FQE) (Le et al., 2019), model-based methods (MB) (Fu 
et al., 2021), and importance sampling methods (IS) (Fu et al., 2021) 
are often considered to lack guaranteed reliability (Qin et al., 2022; 
Fu et al., 2021). This is because evaluating an OPE algorithm typically 
requires comparing the estimated long-term reward 𝑉𝜋 (𝑠0) with the true 
long-term reward 𝑉𝜋 (𝑠0) through online interaction, either in the real 
world or a realistic simulator. Furthermore, estimating the long-term 
reward of a policy involves bootstrapping the Q-function, as in FQE, 
learning a transition model to simulate environment dynamics, as in 
MB, or first learning a behavior policy, as in IS. These approaches 
involve multi-step estimations to compute a single value, which may 
lead to error accumulation. As a result, estimating long-term rewards 
using solely from an offline dataset poses a considerable challenge. 
To tackle this, we propose an alternative approach: myopic policy 
evaluation, which focuses on estimating the one-step reward for the 
learned policy. This method avoids the error accumulation problem. 
We will next present the formulation of the myopic policy evaluation 
and explain why the myopic policy remains valuable in the context of 
badminton tactical decision-making.

In contrast to the optimal long-term policy derived from Eq.  (3), the 
optimal myopic policy focuses on maximizing the immediate, one-step 
reward, defined as follows: 
𝜋∗𝑚𝑦𝑜𝑝𝑖𝑐 (𝑎|𝑠) = argmax

𝑎
𝑟(𝑠, 𝑎),∀𝑠 ∈  . (16)

Correspondingly, evaluating the myopic policy in the offline settings 
just needs to estimate the average reward: 
𝑟̂𝐴𝑉 𝐺𝜋 = E𝑠∼,𝑎∼𝜋 [𝑟̂(𝑠, 𝑎)], (17)

where 𝑟̂(𝑠, 𝑎) represents a generalized estimated reward. Once the op-
timal myopic policy 𝜋∗𝑚𝑦𝑜𝑝𝑖𝑐 is learned, it can be used to determine 
the best tactical action based on the current or historical situations. 
This approach is particularly useful in scenarios such as analyzing 
game video recordings of a player. The myopic policy can generate a 
sequence of one-step optimal actions, which serve as reference actions 
for the player to enhance their performance. By focusing on immediate 
rewards, the myopic policy provides actionable insights that can be 
directly applied to improve decision-making in real time, offering a 
practical tool for tactical refinement and strategic planning.

5.2. Preference-based reward learning

According to Eq.  (17), the evaluation of the myopic policy depends 
on a generalized estimated reward function. In the context of the 
reward function defined in Eq.  (1), only the terminal step of a rally 
yields a non-zero reward. However, in autonomous decision-making, 
it is challenging to predict whether a given action will conclude a 
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rally due to the absence of environmental dynamics. Consequently, 
Eq.  (1) cannot be directly used as the evaluation reward. Inspired 
by the observation that there are some preferences between different 
players’ tactical decisions, for example, we favor the tactical decisions 
of the winner, as they are more likely to maximize the chances of 
winning. We explore preference-based RL, which substitutes numerical 
rewards with preferences between two tactical decision-making seg-
ments (Christiano et al., 2017). Formally, a decision-making segment is 
a sequence of states and actions {(𝑠𝑘, 𝑎𝑘), (𝑠𝑘+1, 𝑎𝑘+1),… , (𝑠𝑘+𝐻 , 𝑎𝑘+𝐻 )}. 
Given that rallies in badminton are relatively short (with an average 
length of 10), we propose using the entire player-based rally 𝜏𝑤 =
{(𝑠𝑝𝑙𝑎𝑦𝑒𝑟1 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟1 )𝑤, (𝑠𝑝𝑙𝑎𝑦𝑒𝑟2 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟2 )𝑤,… , (𝑠𝑝𝑙𝑎𝑦𝑒𝑟𝑇 , 𝑎𝑝𝑙𝑎𝑦𝑒𝑟𝑇 )𝑤}, 𝑤 ∈ {𝐴,𝐵} to 
establish preferences.

Assuming we have a pair of rallies from Player 𝐴0 and Player 𝐵0: 
(𝜏𝐴0 , 𝜏𝐵0 ), the preference can be expressed as 𝑝𝑟0 = (𝜏𝐴0 ≻ 𝜏𝐵0 ) to 
indicate that rally 𝜏𝐴0  is preferred over 𝜏𝐵0 , or 𝑝𝑟0 = (𝜏𝐵0 ≻ 𝜏𝐴0 ) to 
indicate that rally 𝜏𝐵0  is preferred over 𝜏𝐴0 . Intuitively, rallies employ-
ing more effective tactics should yield higher cumulative rewards. The 
learned reward function must adhere to this principle. Following the 
approaches of Christiano et al. (2017) and Liu and Chen (2022), we 
use the learned reward function 𝑟̂ to model the preference predictor 
for a pair of rallies according to the Bradley–Terry model (Bradley and 
Terry, 1952): 

𝑃𝜓 [𝜏𝐴𝑖 ≻ 𝜏𝐵𝑖 ] =
exp

∑𝑇
𝑡=0 𝑟̂𝜓 (𝑠

𝐴𝑖
𝑡 , 𝑎

𝐴𝑖
𝑡 )

∑

𝑤∈{𝐴𝑖 ,𝐵𝑖} exp
∑𝑇
𝑡=0 𝑟̂𝜓 (𝑠

𝑤
𝑡 , 𝑎

𝑤
𝑡 )
. (18)

To align the preference predictor with the provided preference feed-
back, we treat the reward learning process as a binary classification 
problem. Specifically, the reward function 𝑟̂𝜓 , parametrized by 𝜓 , is 
updated to minimize the following cross-entropy loss (Liu and Chen, 
2022):

𝐽𝑟(𝜓) = −E(𝜏𝐴𝑖 ,𝜏𝐵𝑖 ,𝑝𝑟𝑖)∼
[

I{𝑝𝑟𝑖 = (𝜏𝐴𝑖 ≻ 𝜏𝐵𝑖 )} log𝑃𝜓 [𝜏𝐴𝑖 ≻ 𝜏𝐵𝑖 ]

+ I{𝑝𝑟𝑖 = (𝜏𝐵𝑖 ≻ 𝜏𝐴𝑖 )} log𝑃𝜓 [𝜏𝐵𝑖 ≻ 𝜏𝐴𝑖 ]
]

. (19)

6. Experiments

To assess whether Offline RL can develop a superior badminton tac-
tical decision policy compared to the behavior policy4 used to generate 
the offline data, we present the results of a series of experiments in 
this section. First, we detail the data processing steps in Section 6.1, 
which aim to produce a larger and high-quality player-based badminton 
dataset for policy training and evaluation. Using this offline dataset, 
we trained a generalized reward model and several tactical policies. 
We then employed the reward model to evaluate the myopic average 
rewards of the learned tactical policies. The details and main results 
are presented in Section 6.2. Finally, we present deeper analyses and 
discussions in Section 6.3 to provide clear insights about what tactical 
behaviors contribute to the improvement of tactical decision-making.

6.1. Data preprocessing

ShuttleSet is a publicly accessible turn-based singles badminton 
dataset containing stroke-level records, aimed at encouraging research 
in badminton stroke prediction (Wang et al., 2023b). It includes data 
from 44 international badminton matches conducted between 2018 to 
2021, featuring 27 top-ranking men’s and women’s singles players. Un-
like datasets generated autonomously, ShuttleSet relies on annotations 
from domain experts, providing detailed descriptions of badminton 

4 The offline dataset was collected from a series of international matches 
performed by multiple top players, simplify, we use the term ‘‘the behavior 
policy’’ throughout the paper to denote the tactical policies employed by all 
the players in the collected matches.
7 
matches and ground truth features such as stroke types and shuttle 
landing coordinates. To further expand the dataset, ShuttleSet22 (Wang 
et al., 2023a) was collected using the same labeling tools and similar 
stroke-level data formats as ShuttleSet. ShuttleSet22 includes 58 in-
ternational badminton matches from 2022, involving 35 top-ranking 
singles players. In this paper, we integrated these two datasets into a 
larger dataset referred to as Shuttle. Consequently, Shuttle encompasses 
a total of 94 international badminton matches from 2018 to 2022 and 
includes 43 top-ranking singles players.5

Due to the presence of flawed data in the dataset, it is necessary to 
perform data screening and filtering to ensure that only high-quality 
data is retained for analysis and model training. We applied a series 
of criteria to filter the data, with each criterion and the resulting data 
quantities detailed in Table  2. This process resulted in 5416 valid rallies 
for training and evaluation. We split the dataset into a training set, 
validation set, and test set with a ratio of 7:2:1. This division ensures 
that the validation and test sets include data from players not present 
in the training set, allowing us to assess the model’s generalization 
performance. The statistical results of these three datasets are shown 
in Table  3.

Both ShuttleSet and ShuttleSet22 are based on a turn-based sequen-
tial decision process, where a rally is formulated with two players 
alternately returning strokes. Considering the player-based MDP, we 
need to convert these turn-based rallies into player-based rallies. As 
mentioned in Section 3, each turn-based rally can be converted into 
two player-based rallies, so the number of player-based rallies in the 
Shuttle dataset will double. Specifically, the training set, validation 
set, and test set contain 3, 930 × 2 = 7, 860, 904 × 2 = 1, 808, and 
582 × 2 = 1, 164 rallies, respectively. However, during a match, the 
two competing players stand on opposite sides of the court, resulting in 
different coordinate distributions for each player.6 Using these original 
coordinates directly for model training can result in poor performance 
due to inconsistencies in coordinate distributions. To address this issue, 
we utilized the symmetry of the court to normalize the coordinates. 
As shown in Fig.  3, when a coordinate should be located on the right 
side of the court, we use 𝑜𝑟 as the coordinate origin and normalize this 
coordinate with 𝑥̄ =

𝑥𝑜𝑟−𝑥
▵𝑥 , 𝑦̄ =

𝑦−𝑦𝑜𝑟
▵𝑦 . Conversely, when a coordinate 

should be located on the left side, we use 𝑜𝑙 as the origin and normalize 
it with 𝑥̄ =

𝑥−𝑥𝑜𝑙
▵𝑥 , 𝑦̄ =

𝑦𝑜𝑙−𝑦
▵𝑦 . After normalization, all coordinates will 

follow the same distribution. In this case, the normalized coordinates 
𝑥̄ ∈ [0, 1] and 𝑦̄ ∈ [0, 1] indicate in-bounds areas; otherwise, they are 
out of bounds.

6.2. Experimental settings and main results

6.2.1. Preference-based reward learning
In addition to the standard Bradley–Terry model shown in Eq.  (18), 

we also examined a variant referred to as the Normalized Bradley–Terry 
model, formulated as follows: 

𝑃𝜓 [𝜏𝐴𝑖 ≻ 𝜏𝐵𝑖 ] =
exp 1

𝑇𝐴𝑖

∑𝑇𝐴𝑖
𝑡=0 𝑟̂𝜓 (𝑠

𝐴𝑖
𝑡 , 𝑎

𝐴𝑖
𝑡 )

∑

𝑤∈{𝐴𝑖 ,𝐵𝑖} exp
1
𝑇𝑤

∑𝑇𝑤
𝑡=0 𝑟̂𝜓 (𝑠

𝑤
𝑡 , 𝑎

𝑤
𝑡 )
. (20)

In this model, 𝑇𝐴𝑖  represents the length of a player-based rally 𝜏𝐴𝑖 . The 
length normalization is employed to mitigate the adverse effects caused 
by differences in rally lengths.

5 There are 8 duplicate matches and 19 duplicate players between Shut-
tleSet and ShuttleSet22. When combining these datasets, duplicates were 
removed, resulting in a final match count in Shuttle that is less than the sum 
of the two datasets (i.e., 94 < 44 + 58), and a final player count that is also 
less than the total number of players in the two datasets (i.e., 43 < 27 + 35).

6 Both ShuttleSet and ShuttleSet22 provide positions with two-dimensional 
coordinates on the image plane. Furthermore, they provide homogra-
phy matrices to transform these image-plane coordinates into court-plane 
coordinates.
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Table 2
Data filtering procedures.
 Process descriptions Rally num Action num 
 Original dataset. 7,888 81,939  
 Removing the rally contains the action marked as flaw. 6,051 65,167  
 Removing the rally contains the action without getpoint_player label. 6,040 65,021  
 Removing the rally contains the action without shot_type label or shot_type=unknown. 6,033 64,987  
 Removing the rally contains the action without location information. 5,973 64,829  
 Removing the rally contains the action with lose_reason=unknown. 5,966 64,749  
 Removing the rally contains the action with lose_reason=misjudged. 5,790 63,047  
 Removing the rally contains the action marked as out while landing_coordinate belongs to the inside 
area.

5,722 62,304  

 Removing the rally contains the action marked as in while landing_coordinate belongs to the outside 
area.

5,701 62,128  

 Removing the rally contains the action marked as no_passing_half_court while landing_coordinate belongs 
to the half count of the opponent.

5,429 59,377  

 Removing the rally contains the action where the distance between the hitting_coordinate and the
player_coordinate is larger than the range of half court.

5,429 59,377  

 Removing the rally contains non-monotonic time frames. 5,416 59,472  
Table 3
Statistical results of the training set, validation set, and test set.
 Items Training set Validation set Test set  
 Match num 67 18 8  
 Rally num 3,930 904 582  
 Player IDs not present in the training set – {1, 4, 32, 38, 42} {2, 3, 21, 26} 
Fig. 3. Illustration of the coordinate normalization.
As discussed in Section 5.2, we utilize the entire player-based rally 
to establish preferences. Intuitively, the winner’s tactical decisions are 
favored over the loser’s in a rally. We pair the player-based rallies 
from the same turn-based rally into a preference pair, labeling the 
preference based on which player wins the rally point. Specifically, 
if Player A wins the current rally, the preference will be labeled as 
(𝜏𝐴 ≻ 𝜏𝐵); otherwise, it is (𝜏𝐵 ≻ 𝜏𝐴). This is referred to as rally 
preference, which is the primary preference used to train the reward 
model. Besides, we consider another preference called non-terminal 
rally preference. This preference excludes the terminal action in a turn-
based rally and then is constructed similarly to the rally preference. The 
goal of establishing the non-terminal rally preference is to enable the 
learned reward function to identify the superior player-based rally even 
without considering the terminal action in the turn-based rally.

To evaluate which preference predictor and which preference design 
is better, we compared various settings. All the settings are listed as 
follows:

• Bradley–Terry model with rally preference (BT_Rally): Using 
the Bradley–Terry model to predict preferences and training the 
reward model solely with rally preferences.

• Bradley–Terry model with rally preference and non-terminal 
rally preference (BT_Rally2): Utilizing the Bradley–Terry model 
to model the preference predictor and using both rally preferences 
8 
and non-terminal rally preferences to train the reward model. For 
a batch of training data, we derive rally preferences and non-
terminal rally preferences simultaneously and combine the loss 
functions from these two preferences by a scalar factor 𝛼𝑝𝑟𝑒𝑓 , 
i.e., 𝑟(𝜓) = 𝑟𝑎𝑙𝑙𝑦(𝜓) + 𝛼𝑝𝑟𝑒𝑓𝑛𝑜𝑛-𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑟𝑎𝑙𝑙𝑦(𝜓).

• Normalized Bradley–Terry model with rally preference
(NBT_Rally): Utilizing the normalized Bradley–Terry variant to 
model the preference predictor and only using rally preferences 
to train the reward model.

• Normalized Bradley–Terry model with rally preference and 
non-terminal rally preference (NBT_Rally2): Utilizing the nor-
malized Bradley–Terry variant to model the preference predictor 
and using both rally preferences and non-terminal rally prefer-
ences to train the reward model. The loss functions from these 
two preferences are combined in the same way as BT_Rally2.

We trained the reward models to minimize the objective specified in 
Eq.  (19) using the training set. The training process was conducted with 
three random seeds, and the network architecture and hyperparameters 
of these models are detailed in Appendix  A.1. Upon completing the 
training phase, we evaluated the performance of the learned reward 
models on the test set. As detailed in Table  3, the test set includes 
both players who appeared in the training data and those who did not. 
To examine potential performance variations between in-distribution 
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Table 4
Evaluation results of reward models.
 Settings In-distribution Scenarios Out-of-distribution Scenarios
 RP Acc NTRP Acc AP Acc RP Acc NTRP Acc AP Acc  
 BT_Rally 0.9692 ± 0.0016 0.5908 ± 0.0054 0.9227 ± 0.0022 0.9539 ± 0.0038 0.6843 ± 0.0069 0.9246 ± 0.0020  
 BT_Rally2 0.9538 ± 0.0000 0.5919 ± 0.0078 0.9106 ± 0.0031 0.9458 ± 0.0038 0.6694 ± 0.0157 0.9121 ± 0.0049  
 NBT_Rally 0.8471 ± 0.0082 0.5138 ± 0.0224 0.9162 ± 0.0098 0.8631 ± 0.0084 0.5894 ± 0.0115 0.9294 ± 0.0116  
 NBT_Rally2 0.8339 ± 0.0068 0.5490 ± 0.0138 0.9284 ± 0.0048 0.8550 ± 0.0157 0.5894 ± 0.0100 0.9379 ± 0.0055 
and out-of-distribution scenarios, we categorized the test instances into 
two groups: in-distribution scenarios and out-of-distribution scenarios. 
This classification is based on whether at least one player in the 
rally was absent from the training set. The evaluation metrics include 
rally-preference accuracy (RP Acc), non-terminal rally-preference ac-
curacy (NTRP Acc), and action-preference accuracy (AP Acc). These 
metrics measure how well the learned reward models align with rally 
preferences, non-terminal rally preferences, and action preferences,7 
respectively. Table  4 presents the evaluation results, which include the 
mean and standard deviation over three runs.

As illustrated in Table  4, the Bradley–Terry models (i.e., BT_Rally 
and BT_Rally2) demonstrate higher rally-preference accuracy com-
pared to the Normalized Bradley–Terry models (i.e., NBT_Rally and 
NBT_Rally2). This result suggests that the difference in length be-
tween paired rallies does not significantly impact the performances 
of the Bradley–Terry models. As rally preferences are viewed as the 
primary preferences in this paper, BT_Rally emerges as the optimal 
configuration for the reward model. Obviously, the non-terminal rally-
preference accuracy is notably lower, indicating the challenge of align-
ing non-terminal rally preferences. Nevertheless, BT_Rally achieves 
high accuracy in rally-preference and action-preference under both in-
distribution (with averaged scores of 0.9692 and 0.9227, respectively) 
and out-of-distribution scenarios (with averaged scores of 0.9539 and 
0.9246, respectively), demonstrating its excellent generalization of 
rally-preference alignment and action-preference alignment in the test 
set.

As discussed in Section 1, traditional OPE methods aim to estimate 
long-term returns. However, these methods lack guaranteed reliabil-
ity when neither real-world interaction nor simulator interaction is 
available. Similarly, the preference-based reward model serves as an 
estimator of the true reward. Nevertheless, its superior preference 
generalization, as demonstrated in Table  4, provides a confidence coef-
ficient that supports our trust in this evaluation model. Therefore, we 
use the reward function derived from the BT_Rally model to assess the 
Offline RL policies in the following section. Additionally, the evaluation 
results of a typical OPE algorithm (i.e., FQE (Le et al., 2019)) are 
provided as reference results in Appendix  B.2.

6.2.2. Offline RL
To evaluate the performance of the proposed method (CQL with 

Hybrid Action Space), we compare it against several baselines adapted 
for the hybrid action space. The selected baselines are as follows:

• Decision Transformer (DT) with Original Goal: Decision Trans-
former (DT) (Chen et al., 2021) formulates Offline RL as a se-
quence modeling task by leveraging the powerful distribution 
modeling capacity of transformer architectures (Vaswani et al., 
2017). It models the joint distribution of state, action, and reward 
sequences and then conditions on historical states, actions, and 
returns-to-go to generate subsequent actions. This baseline specif-
ically uses the original accumulated long-term rewards from the 
dataset as the returns-to-go.

7 In a turn-based rally, if the terminal action results in scoring a point, 
it is considered the most crucial decision in the rally. Consequently, action 
preferences are established as 𝑎𝑇 ≻ 𝑎𝑖 for 𝑖 ∈ [1, 𝑇 − 1]; otherwise, the 
preferences are 𝑎𝑖 ≻ 𝑎𝑇  for 𝑖 ∈ [1, 𝑇 − 1]. We introduced the action-preference 
accuracy to evaluate the reward model more comprehensively.
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• Decision Transformer (DT) with Winning Goal: This variant 
replaces the original accumulated returns from the dataset with 
a constant winning signal (a return of 1) as the expected returns-
to-go, representing the goal of winning the game.

• Behavior Cloning (BC): Behavior Cloning (Pomerleau, 1988) 
is a classical imitation learning method that learns a policy by 
minimizing the discrepancy between predicted and demonstrated 
actions in a supervised manner.

• Sequence-based Behavior Cloning (BC): As an extension of 
BC, this baseline utilizes a transformer architecture for sequence 
modeling. Its formulation is similar to that of DT but does not 
incorporate returns-to-go conditioning.

Detailed descriptions, network architectures, and hyperparameters for 
the proposed method and all baselines are provided in Appendix  A.2, 
Appendix  A.3, and Appendix  A.4, respectively.

As discussed in Section 5.1, rather than estimating the long-term 
return for policy evaluation, we employed the learned reward function 
to assess the myopic optimality of the policy. Given that the BT_Rally 
model achieves the highest rally-preference accuracy, it is used to 
estimate the average rewards of the learned policies. We also estimated 
the average reward of the behavior policy to compare its performance 
with that of the learned policies.

The test set includes both winning and losing rallies. To demonstrate 
the performance of the policies in different scenarios, we estimated 
the average rewards of the policies in winning rallies, losing rallies, 
and integrated rallies, respectively. Furthermore, to assess policy gen-
eralization on out-of-distribution data, we categorized the test set into 
in-distribution and out-of-distribution scenarios based on whether the 
players had appeared in the training set. The results are presented in 
Table  5.

As shown in Table  5, both CQL with Hybrid Action Space and the 
baseline methods achieve higher average rewards than the behavior 
policy in both integrated rallies and losing rallies. This indicates that 
training AI models with winning rallies can effectively help generate 
improved tactics for losing rallies. Notably, CQL with Hybrid Action 
Space demonstrates optimal performance, underscoring its superiority 
in enhancing the myopic optimality of tactical decisions. In winning 
rallies, however, the behavior policy itself performs well, making it 
difficult to surpass. Only CQL with Hybrid Action Space succeeds 
noticeably in this regard, further demonstrating its ability to generate 
tactics that exceed those present in the dataset. Additionally, given that 
BC’s objective is to replicate dataset actions, its marginal performance 
gain over the behavior policy merely confirms its effectiveness as a 
supervised learning method for imitating winning behaviors. When 
comparing in-distribution and out-of-distribution results, only a slight 
performance degradation is observed, indicating strong generalization 
capability on out-of-distribution data. Furthermore, in the comparison 
between DT with Winning Goal and DT with Original Goal, the former 
achieves a slightly higher average reward, highlighting the value of 
winning condition modeling, though it does not perform as well as CQL 
with Hybrid Action Space.

6.3. Discussions

6.3.1. Which types of tactical actions contribute to the rewards?
In this section, we aim to identify which types of tactical behav-

iors contribute to the rewards. To investigate this, we examine the 
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Table 5
Average rewards of the learned policies.
 Policies In-distribution Scenarios Out-of-distribution Scenarios
 Integrated rallies Winning rallies Losing rallies Integrated rallies Winning rallies Losing rallies  
 Behavior Policy 0.7254 0.8460 0.6047 0.7273 0.8462 0.6439  
 CQL with Hybrid Action Space 0.8703 ± 0.0786 0.8698 ± 0.0757 0.8709 ± 0.0815 0.8679 ± 0.0873 0.8852 ± 0.0685 0.8557 ± 0.1006  
 DT with Winning Goal 0.8027 ± 0.0046 0.7998 ± 0.0042 0.8056 ± 0.0050 0.7939 ± 0.0046 0.7794 ± 0.0090 0.8041 ± 0.0030  
 DT with Original Goal 0.7821 ± 0.0049 0.7998 ± 0.0042 0.7643 ± 0.0060 0.7706 ± 0.0054 0.7794 ± 0.0090 0.7644 ± 0.0046  
 BC 0.8482 ± 0.0042 0.8473 ± 0.0043 0.8492 ± 0.0041 0.8581 ± 0.0055 0.8498 ± 0.0066 0.8638 ± 0.0049 
 Sequence-based BC 0.7807 ± 0.0042 0.7789 ± 0.0052 0.7824 ± 0.0033 0.7740 ± 0.0037 0.7638 ± 0.0089 0.7812 ± 0.0024  
Fig. 4. Reward distributions across different tactical action categories. (a) Rally-preference case. (b) Non-terminal rally-preference case. (c) Action-preference 
case.
distribution of reward values across three scenarios: rally preference, 
non-terminal rally preference, and action preference. For the rally-
preference scenario, we classify all tactical actions into two categories: 
win and loss, based on whether the actions originate from winning 
or losing rallies, and we compare the reward distributions between 
these two categories. Similarly, in the non-terminal rally-preference 
scenario, actions are also divided into win and loss, with the distinction 
that terminal actions in turn-based rallies are excluded. In the action-
preference scenario, tactical actions are divided into three categories: 
non-terminal actions, terminal actions in winning rallies, and terminal 
actions in losing rallies. We then compare the reward distributions 
across these three categories. The results are presented in Fig.  4.

From Fig.  4(c), we observe that the terminal actions in winning 
rallies receive reward values close to 1, while the terminal actions in 
losing rallies receive reward values near −1. The reward distribution 
for non-terminal actions falls between these two extremes. This result 
aligns with the intuition that when a terminal action results in scoring, 
it is considered the most crucial tactical decision in the rally and should 
receive the highest reward value. Conversely, when a terminal action 
results in losing a point, it is deemed a poor tactical decision and should 
receive a lower reward value. This type of reward distribution enables 
the reward model to achieve high action-preference accuracy, as shown 
in Table  4.

As illustrated in Fig.  4(b), the reward distributions for winning and 
losing actions show no significant difference when terminal actions are 
excluded. This contradicts the intuition that non-terminal actions from 
a winning rally contribute more to the winning outcome than those 
from a losing rally, even if they do not directly lead to victory, they at 
least help the athlete gain initiative or advantages. However, this result 
is consistent with the non-terminal rally-preference accuracy, which is 
shown slightly above 0.6.

Finally, considering the rally-preference scenario, which includes 
both non-terminal and terminal actions, the reward distributions of 
winning actions and losing actions can be viewed as integrations of 
the reward distribution of winning actions in the non-terminal rally-
preference scenario with the reward distribution of terminal-win ac-
tions in the action-preference scenario and the reward distribution of 
losing actions in the non-terminal rally-preference scenario with the 
reward distribution of terminal-loss actions in the action-preference 
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scenario, respectively. Consequently, the average reward for winning 
actions is slightly higher than that for losing actions, as depicted in 
Fig.  4(a).

6.3.2. Does the learned policies outperform the behavior policy when ex-
cluding the terminal actions?

Terminal actions are assigned extreme reward values, as illustrated 
in Fig.  4(c). We are curious to see if the learned policies will continue to 
achieve higher average rewards than the behavior policy when terminal 
actions are excluded. To investigate this, we remove the terminal 
actions and compare the average rewards across all policies. The results 
are shown in Table  6.

Compared to the results in Table  5, the performance of the behavior 
policy improves significantly in both integrated rallies and losing rallies 
when terminal actions are excluded. However, no clear improvement 
is observed in the performance of the learned policies. When terminal 
actions are excluded, only CQL with Hybrid Action Space shows a 
distinctly superior performance compared to the behavior policy. This 
suggests that the policies derived from CQL with Hybrid Action Space 
have the potential to enhance tactical decision-making earlier in the 
rallies, beyond just the terminal decisions.

6.3.3. Does the learned policies outperform the behavior policy when ex-
cluding the out-of-bounds actions?

In the terminal step, only out-of-bounds actions result in losing a 
point. As the terminal actions in losing rallies are assigned a negative 
reward close to −1, out-of-bounds actions may also receive negative 
rewards. We are curious to see if the learned policies will still achieve 
higher average rewards than the behavior policy when out-of-bounds 
actions are excluded. The average rewards, excluding out-of-bounds 
actions, are reported in Table  7.

Compared to the results in Table  5, the performance of the be-
havior policy improves significantly in losing rallies, which in turn 
enhances performance in integrated rallies. The average rewards of 
all the learned policies, except for CQL with Hybrid Action Space, do 
not show significant improvement. This suggests that these models are 
not affected by out-of-bounds actions, as they have learned to land 
the shuttle within the boundaries. Notably, the performance of CQL 
with Hybrid Action Space shows a marked increase. Although this 
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Table 6
Average rewards of the learned policies without terminal actions.
 Policies Integrated rallies Winning rallies Losing rallies  
 Behavior Policy 0.8402 0.8434 0.8369  
 CQL with Hybrid Action Space 0.8669 ± 0.1001 0.8668 ± 0.0970 0.8671 ± 0.1033 
 DT with Winning Goal 0.8019 ± 0.0059 0.7979 ± 0.0054 0.8059 ± 0.0064  
 DT with Original Goal 0.7820 ± 0.0060 0.7979 ± 0.0054 0.7655 ± 0.0073  
 BC 0.8480 ± 0.0050 0.8453 ± 0.0051 0.8507 ± 0.0049  
 Sequence-based BC 0.7803 ± 0.0046 0.7780 ± 0.0055 0.7826 ± 0.0037  
Table 7
Average rewards of the learned policies without out-of-bounds actions.
 Policies Integrated rallies Winning rallies Losing rallies  
 Behavior Policy 0.8470 0.8532 0.8400  
 CQL with Hybrid Action Space 0.9312 ± 0.0025 0.9300 ± 0.0025 0.9324 ± 0.0024 
 DT with Winning Goal 0.8024 ± 0.0054 0.7992 ± 0.0055 0.8056 ± 0.0054  
 DT with Original Goal 0.7816 ± 0.0059 0.7992 ± 0.0055 0.7645 ± 0.0068  
 BC 0.8490 ± 0.0052 0.8475 ± 0.0054 0.8506 ± 0.0051  
 Sequence-based BC 0.7803 ± 0.0049 0.7783 ± 0.0060 0.7823 ± 0.0039  
Table 8
Policy evaluation using domain metrics (↑: expecting high value; ↓: expecting low value).
 Domain Metrics CQL with Hybrid Action Space DT with Winning Goal DT with Original Goal BC Sequence-based BC 
 Action Difference Rate↑ 0.6647 ± 0.0071 0.4886 ± 0.0011 0.4861 ± 0.0012 0.5006 ± 0.0022 0.4876 ± 0.0025  
 Rally Difference Rate↑ 0.8949 ± 0.0094 0.8519 ± 0.0022 0.8555 ± 0.0042 0.8580 ± 0.0020 0.8559 ± 0.0020  
 Irrational Shot Type Rate↓ 0.0080 ± 0.0138 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.6𝑒 − 5 ± 6.2𝑒 − 5  
 Active Shot Type Rate↑ 0.3526 ± 0.0150 0.3015 ± 0.0050 0.2766 ± 0.0045 0.3484 ± 0.0089 0.2727 ± 0.0037  
 Out-of-bounds Action Rate↓ 0.0317 ± 0.0496 0.0002 ± 6.2𝑒 − 5 0.0003 ± 6.2𝑒 − 5 0.0 ± 0.0 0.0001 ± 0.0001  
 Average Distance of OLP↑ 0.3898 ± 0.0176 0.2185 ± 0.0018 0.2199 ± 0.0018 0.2139 ± 0.0013 0.2208 ± 0.0029  
 Average Distance of PMP↓ 0.3467 ± 0.0103 0.1666 ± 0.0020 0.1722 ± 0.0023 0.4093 ± 0.0003 0.1717 ± 0.0015  
 Average Distance of CMP↓ 0.3430 ± 0.0172 0.1678 ± 0.0017 0.1699 ± 0.0014 0.1512 ± 0.0013 0.1673 ± 0.0013  
Fig. 5. Two illustrative examples of the tactics generated by CQL with Hybrid Action Space.
result indicates that the policy generated by this model may not strictly 
adhere to the no-out-of-bounds constraint, it suggests that the policy 
could further enhance tactical decision-making if we strictly enforce 
the constraint to keep hits within bounds.

6.3.4. What types of tactical behaviors improve the performance of the 
learned policy?

To find out which kinds of tactical elements contribute to the 
enhanced performance, we defined a series of domain metrics and 
used these metrics to assess the learned policies. The definitions of 
the domain metrics are explained in Appendix  B.1, and the results are 
shown in Table  8.

As illustrated in Table  8, CQL with Hybrid Action Space emerges 
as the optimal model shown in Table  5, achieving the highest value in 
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the Active Shot Type Rate. This finding supports the intuitive under-
standing that players can seize the initiative by frequently employing 
active shot types, such as smash and rush. Furthermore, in terms of the 
Average Distance of OLP, this model also performs best, suggesting that 
the policy derived by this model effectively mobilizes the opponent, 
thereby maximizing the opponent’s energy expenditure. We believe 
these two strengths are the key reasons why CQL with Hybrid Action 
Space outperforms all other models in terms of average reward. This 
underscores the importance of opponent mobilization and initiative es-
tablishment in badminton games. Additionally, CQL with Hybrid Action 
Space achieves the highest Action Difference Rate and Rally Difference 
Rate, indicating a greater potential to enhance the performance of the 
behavior policy through the use of shot types that are different from 
the behavior policy.
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It is crucial to ensure that the tactical policy avoids employing 
irrational actions, as these may not be viable in real-world scenarios. 
Although the policy derived from CQL with Hybrid Action Space might 
occasionally resort to such irrational shot types, the frequency of these 
occurrences is fortunately low. Similarly, out-of-bounds actions are not 
desirable in badminton tactical decision-making, as it is viewed as a 
fundamental strategic principle to be adhered. Nonetheless, CQL with 
Hybrid Action Space still exhibits a slight probability of generating out-
of-bounds actions. Compared to other models that utilize supervised 
learning,8 CQL with Hybrid Action Space performs poorly in terms 
of both the Irrational Shot Type Rate and the Out-of-bounds Action 
Rate. This highlights the fact that supervised learning can more readily 
develop policies that comply with strict constraints, while learning 
through Bellman Bootstrapping poses greater challenges.

Additionally, the policy derived from CQL with Hybrid Action Space 
leads to players covering greater average movement distances com-
pared to most other policies. Furthermore, the recommended move-
ment positions are significantly farther from the center of the court. 
These behaviors could potentially increase players’ physical exertion 
during real-world badminton matches. However, these drawbacks may 
not be identified in an offline policy evaluation setting, as the offline 
policy evaluation typically does not account for the physical execution 
involved in playing badminton. As a result, CQL with Hybrid Action 
Space can still achieve higher average rewards.

6.3.5. Case study
To illustrate the nature of the generated tactics, we present two 

action rounds from the test set as case studies. Fig.  5 compares the 
tactics generated by our CQL with Hybrid Action Space against the 
original tactics observed in the dataset. In Case 1, the opponent plays 
a ‘‘lob’’ to the left-bottom corner, and the original tactic of the active 
player is to return a ‘‘clear’’ to the opponent’s back court. In contrast, 
the Offline-RL model recommends a more aggressive ‘‘smash’’ in this 
situation, a shot that would help the player seize and maintain the 
initiative. In Case 2, while the Offline-RL model also recommends a 
‘‘net shot’’ in response to the opponent’s ‘‘defensive shot,’’ it specifies 
a distinct landing position closer to the net. This tactical adjustment is 
designed to force the opponent to move and enhance the threat level of 
the net shot. Additionally, the model suggests the player move closer 
to the net in preparation for a potential return of the net shot.

7. Limitations and future works

Although this work demonstrates the potential of Offline RL as a 
tactical generator for badminton by adapting CQL for the hybrid action 
space and utilizing a preference-based reward model, it remains a pre-
liminary exploration of AI-driven badminton tactical decision-making. 
Its limitations and targeted future research directions are discussed as 
follows:

• Myopic Policy Evaluation: In the absence of online interaction, 
we employ the estimated average reward rather than the V-value 
or Q-value for policy evaluation, which is inherently myopic. 
This approach can only demonstrate that the policy generates a 
one-step optimal tactical action, but not that it can produce a 
long-term optimal tactical sequence. Although Section 5.1 dis-
cusses the practical value of the myopic optimal policy, our 
ultimate objective remains to find a policy capable of recommend-
ing a tactical sequence that helps athletes win the rally. Therefore, 
designing effective long-term policy evaluation methods is a key 
focus for future work. We plan to explore novel OPE algorithms 

8 As discussed in Section 4, both DT and BC are trained under the 
paradigm of supervised learning, whereas CQL follows the reinforcement 
learning format, updating its policy via Bellman Bootstrapping.
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capable of reliably assessing long-term policy performance, or 
alternatively, to develop a physically simulated badminton en-
vironment, similar to Zhang et al. (2023a), for online policy 
evaluation.

• Preference Assumption: We assume that the winner’s tactical 
decisions are superior to the loser’s within the same rally, based 
on the general belief that better tactics lead to winning a point. 
However, this assumption remains intuitive, and exceptions exist. 
For instance, a player might be in a dominant position to win the 
rally but suddenly makes a mistake, resulting in a loss. In such 
cases, we cannot simply assign rally preference based solely on 
the rally’s outcome.

• Limited Training Data: The dataset used in this paper comprises 
94 international matches, containing only the tactical decisions 
of professional badminton athletes. Although our experimental 
results show that the learned policy can generalize to unseen 
professional players, its applicability to other scenarios, such as 
amateur matches or players, remains unvalidated. Additionally, 
the performance of Offline RL is highly dependent on the diversity 
of the training data. While our dataset includes both winning 
and losing rallies, these represent the tactical behaviors of pro-
fessional athletes, which can be considered expert or near-expert 
level. Whether incorporating amateur match data would improve 
policy performance requires further exploration. To address these 
limitations, we plan to expand the dataset by incorporating a 
wider variety of matches, particularly from amateur levels, and 
to retrain the policy using the enriched data to analyze its im-
pact. In addition to offline training, we will also investigate the 
potential of combining offline learning with online fine-tuning in 
a badminton tactical simulator.

• Lack of Exploration in Algorithm Advancement: The primary 
contribution of our work lies in developing a pipeline that spans 
from offline data processing to policy training and evaluation, 
demonstrating Offline RL’s potential as a direct badminton tacti-
cal generator to enhance decision-making. Consequently, we have 
compared CQL with Hybrid Action Space against only two other 
types of algorithms, rather than all advanced Offline RL methods. 
Additionally, we have not explored the performance ceiling that 
this class of algorithms can achieve in this specific domain. To 
address these limitations, future work will include comprehensive 
comparisons with state-of-the-art Offline RL algorithms (e.g., the 
hindsight self-supervision approach (Yu et al., 2023)) and investi-
gate novel algorithmic improvements to further enhance tactical 
policy performance.

• Lack of Real-world Validation: While the learned policy has 
been quantitatively evaluated on the offline dataset, it lacks val-
idation in real-world scenarios. Such validation requires building 
a real-time situation processing module to digitize current match 
states for policy input and a visualization interface to convert tac-
tical recommendations into interpretable graphics for coaches and 
athletes. Finally, integrating these components with the learned 
policy for testing. We plan to develop this complete pipeline to 
generate real-time tactical decisions, and subsequently invite pro-
fessional badminton coaches and players to evaluate our policy’s 
practical utility through this system.

8. Conclusions

In this study, we investigated the use of Offline RL to enhance 
tactical decision-making in badminton. A key innovation of our work 
is the development of a preference-based reward model, which offers 
an alternative to traditional offline policy evaluation methods. This 
model emphasizes short-term utility, aligning with tactical preferences 
to assess the effectiveness of learned tactical policies. Additionally, we 
addressed the challenges of adapting existing Offline RL algorithms to 
the hybrid action space inherent in badminton tactics. Our approach 
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involved using the advanced method: CQL with Hybrid Action Space. 
This method was tailored to meet the unique demands of badminton. 
The experimental results demonstrate that all learned policies outper-
form the behavior policy, with CQL with Hybrid Action Space achieving 
the highest average rewards. Although we only established the short-
term optimality of the policies derived from Offline RL, these results 
highlight the potential to revolutionize sports strategy by leveraging 
pre-collected datasets to develop effective tactical policies. This of-
fers promising insights for enhancing athletes’ tactical training and 
recommendations in badminton and beyond.
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Appendix A. Algorithm details

A.1. Preference-based reward model

The estimated reward function 𝑟̂𝜓  is modeled using a multilayer 
perceptron (MLP) parametrized by 𝜓 . Before the inputs 𝑠𝑡 and 𝑎𝑡 are 
fed into the MLP network, we apply a linear embedding layer to process 
these input features. Specifically, since the input features consist of two 
types: shot type and position coordinates, we use two separate shared 
embedding modules to embed the shot type and position coordinates, 
respectively.

As discussed in Liu and Chen (2022), preference-based RL typically 
involves three alternating steps: reward learning, policy optimization, 
and query selection. In the query selection step, ensemble-based sam-
pling is a common and effective strategy to solicit preferences and 
maximize the information gained. Although our focus is solely on the 
reward learning step in an offline setting, we maintain the ensemble 
strategy in this study. Specifically, we fit an ensemble of 𝑞 reward func-
tions {𝑟̂𝜓1 ,… , 𝑟̂𝜓𝑞 }, with each reward function trained on || preference 
pairs sampled from the dataset  with replacement. We then average 
these functions to obtain the final estimated reward.

We conducted a grid search to identify the optimal hyperparame-
ters. The complete list of hyperparameters explored can be found in 
Table  A.1. The code implementation of the reward model refers to 
https://github.com/Wenminggong/PbRL_for_PHRI.
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A.2. Conservative Q-learning with hybrid action space

We implemented CQL on top of the SAC algorithm. Basically, this 
algorithm involves two kinds of important scalar factors: 𝛼𝑐𝑞𝑙 for adjust-
ing the conservative regulation term and 𝛼𝑒𝑛 for balancing the trade-off 
between policy entropy and the reward. Both fixed and self-adjusting 
scalar factors can be utilized, but we chose the automatic adjustment 
scheme due to its flexibility. In the context of a hybrid action space, 
𝛼𝑒𝑛𝑑  and 𝛼𝑒𝑛𝑐  represent the entropy scalar factors for the discrete and 
continuous action components, respectively. We only need to specify 
the initial values (i.e., 𝛼𝑐𝑞𝑙0 , 𝛼𝑒𝑛𝑑0 , and 𝛼

𝑒𝑛
𝑐0
) and the budget parameters 

(i.e., 𝑏𝑐𝑞𝑙, 𝑏𝑒𝑛𝑑  and 𝑏𝑒𝑛𝑐 ), after which the scalar factors automatically 
adjust via dual gradient descent (Kumar et al., 2020; Haarnoja et al., 
2018).

Particularly, CQL employs log∑𝑎 exp(𝑄(𝑠, 𝑎)) in the objective, as 
shown in Eq.  (11), to train the Q-function. According to Kumar et al. 
(2020), this expression can be computed exactly in discrete action 
domains. However, in continuous action domains, it requires impor-
tance sampling. Following this approach, we sample 𝑁 action samples 
from a uniform-at-random 𝑈𝑛𝑖𝑓 (𝑎) and 𝑁 action samples from the 
current policy 𝜋(𝑎|𝑠) at each state to perform importance sampling 
in continuous action domains. The detailed computation process is 
outlined below: 

log
∑

𝑎
exp(𝑄(𝑠, 𝑎)) = log∫𝑎𝑑 ∫𝑎𝑐

exp(𝑄(𝑠, 𝑎))

= log
∑

𝑎𝑑
(∫𝑎𝑐

exp(𝑄(𝑠, 𝑎)))

= log
∑

𝑎𝑑
( 1
2
E𝑎𝑐∼𝑈𝑛𝑖𝑓 (𝑎𝑐 )[

exp(𝑄(𝑠, 𝑎))
𝑈𝑛𝑖𝑓 (𝑎𝑐 )

]

+ 1
2
E𝑎𝑐∼𝜋(𝑎𝑐 |𝑠,𝑎𝑑 )[

exp(𝑄(𝑠, 𝑎))
𝜋(𝑎𝑐 |𝑠, 𝑎𝑑 )

])

≈ log
∑

𝑎𝑑
( 1
2𝑁

𝑁
∑

𝑎𝑐𝑖 ∼𝑈𝑛𝑖𝑓 (𝑎
𝑐 )
[
exp(𝑄(𝑠, 𝑎𝑖))
𝑈𝑛𝑖𝑓 (𝑎𝑐 )

]

+ 1
2𝑁

𝑁
∑

𝑎𝑐𝑖 ∼𝜋(𝑎
𝑐
|𝑠,𝑎𝑑 )

[
exp(𝑄(𝑠, 𝑎𝑖))
𝜋(𝑎𝑐 |𝑠, 𝑎𝑑 )

]).

(A.1)

Additionally, the full list of CQL with Hybrid Action Space hyper-
parameters is provided in Table  A.2. The implementation of CQL with 
Hybrid Action Space refers to https://github.com/corl-team/CORL/
tree/main and https://github.com/nisheeth-golakiya/hybrid-sac/tree/
main.

A.3. Decision transformer

Unlike conventional RL algorithms such as temporal difference 
(TD) learning, DT can perform credit assignment directly through self-
attention, enhancing its effectiveness in sparse-reward scenarios. To 
enable transformers to learn meaningful patterns and conditionally 
generate actions during testing, DT represents the trajectory as follows: 

𝜏 = (𝐺1, 𝑠1, 𝑎1, 𝐺2, 𝑠2, 𝑎2,… , 𝐺𝑇 , 𝑠𝑇 , 𝑎𝑇 ), (A.2)

where 𝐺𝑡 =
∑𝑇
𝑡′=𝑡 𝑟𝑡′  denotes the returns-to-go. This trajectory rep-

resentation allows us to train the model and generate new actions 
through autoregression. The network architecture of the DT model is 
illustrated in Fig.  A.1. The inputs consist of the entire trajectory, while 
the outputs are the subsequent actions. In this setting, the policy can be 
denoted as 𝜋(𝑎𝑡|𝑠𝑡, 𝐺𝑡, 𝑎𝑡−1, 𝑠𝑡−1, 𝐺𝑡−1,… , 𝑎1, 𝑠1, 𝐺1). During training, the 
objective is to minimize the difference between the action output by the 
network and the action from the dataset, given the historical returns-to-
go, states, actions, and the current returns-to-go and state. Considering 
the hybrid action space containing discrete stroke types and two kinds 

https://github.com/Wenminggong/PbRL_for_PHRI
https://github.com/corl-team/CORL/tree/main
https://github.com/corl-team/CORL/tree/main
https://github.com/corl-team/CORL/tree/main
https://github.com/nisheeth-golakiya/hybrid-sac/tree/main
https://github.com/nisheeth-golakiya/hybrid-sac/tree/main
https://github.com/nisheeth-golakiya/hybrid-sac/tree/main
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Table A.1
Hyperparameters of reward models.
 Hyperparameters BT_Rally BT_Rally2 NBT_Rally NBT_Rally2  
 Batch size 512 512 512 256  
 Learning rate 1𝑒 − 4 1𝑒 − 4 1𝑒 − 4 1𝑒 − 4  
 Max epochs 500 500 500 500  
 Random seed {0, 1,024, 2,024} {0, 1,024, 2,024} {0, 1,024, 2,024} {0, 1,024, 2,024} 
 Embedding dimension for shot type 15 15 15 15  
 Embedding dimension for position coordinates 10 10 10 10  
 Hidden layer dimension 512 256 256 256  
 Number of layers 5 3 3 3  
 Activate function of output layer tanh tanh tanh tanh  
 Reward ensemble size 𝑞 5 5 1 5  
 Preference scalar factor 𝛼𝑝𝑟𝑒𝑓 0.5 0.5 0.5 0.5  
Table A.2
Hyperparameters of CQL with Hybrid Action Space.
 Hyperparameters Values  
 Batch size 256  
 Discount factor 0.99  
 Learning rate for the policy 5𝑒 − 7  
 Learning rate for the Q-function 1𝑒 − 6  
 Random seed {0, 1,024, 2,024} 
 Hidden layer dimensions of the policy network and the Q-network 256  
 Number of layers of the policy network and the Q-network 3  
 Activate function Relu  
 Soft target Q-network update rate 5𝑒 − 3  
 Learning rate for the scalar factor 𝛼𝑐𝑞𝑙 1𝑒 − 5  
 The initial scalar factor 𝛼𝑐𝑞𝑙0 𝑒−2  
 The budget parameter 𝑏𝑐𝑞𝑙 5.0  
 Learning rate for the scalar factor 𝛼𝑒𝑛 3𝑒 − 5  
 The initial scalar factor 𝛼𝑒𝑛𝑑0 0.3  
 The budget parameter 𝑏𝑒𝑛𝑑 0.1 × log(10)  
 The initial scalar factor 𝛼𝑒𝑛𝑐0 0.3  
 The budget parameter 𝑏𝑒𝑛𝑐 −2  
 Max training step 1𝑒+5  
 Importance sampling number 𝑁 10  
Fig. A.1. The architecture of DT.
of continuous two-dimensional coordinates, we decomposed the policy 
similarly to Eq.  (13): 
𝜋(𝑎𝑡|𝑠𝑡, 𝐺𝑡, 𝑎𝑡−1, 𝑠𝑡−1, 𝐺𝑡−1,… , 𝑎1, 𝑠1, 𝐺1) =

𝜋(𝑎𝑑𝑡 |𝑠𝑡, 𝐺𝑡, 𝑎𝑡−1, 𝑠𝑡−1, 𝐺𝑡−1,… , 𝑎1, 𝑠1, 𝐺1)

× 𝜋(𝑎𝑐𝑡 |𝑠𝑡, 𝐺𝑡, 𝑎𝑡−1, 𝑠𝑡−1, 𝐺𝑡−1,… , 𝑎1, 𝑠1, 𝐺1, 𝑎
𝑑
𝑡 ).

(A.3)

We use a multi-head neural network as the output layer of the model 
to separately output discrete and continuous actions. The outputs of the 
discrete actions are the probabilities of 10 stroke types
𝜋(𝑎𝑑𝑖𝑡 |𝑠𝑡, 𝐺𝑡, 𝑎𝑡−1, 𝑠𝑡−1, 𝐺𝑡−1,… , 𝑎1, 𝑠1, 𝐺1) ∈ [0, 1], where ∑10

𝑖 𝜋(𝑎𝑑𝑖𝑡 |⋯) =
1. We use a cross-entropy loss as the objective function of the discrete 
actions: 

𝐽 (𝜙𝑑 ) = E𝑠𝑡 ,𝐺𝑡 ,𝑎𝑡−1 ,𝑠𝑡−1 ,𝐺𝑡−1 ,…,𝑎1 ,𝑠1 ,𝐺1∼[−
10
∑

𝑦𝑖 log𝜋𝜙𝑑 (𝑎
𝑑𝑖
𝑡 |⋯)], (A.4)
𝑖=1
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where 𝑦𝑖 ∈ {0, 1} is the label of discrete action. Additionally, two con-
tinuous coordinate distributions on two-dimensional planes are used 
to output the continuous landing and movement positions, with the 
network trained using log-likelihood. 
𝐽 (𝜙𝑙𝑝𝑝 ) = E𝑙𝑝𝑝,𝑡 ,𝑠𝑡 ,𝐺𝑡 ,𝑎𝑡−1 ,𝑠𝑡−1 ,𝐺𝑡−1 ,…,𝑎1 ,𝑠1 ,𝐺1∼[− log𝜋𝜙𝑙𝑝𝑝 (𝑙𝑝𝑝,𝑡|⋯)]; (A.5)

𝐽 (𝜙𝑚𝑝𝑝 ) = E𝑚𝑝𝑝,𝑡 ,𝑠𝑡 ,𝐺𝑡 ,𝑎𝑡−1 ,𝑠𝑡−1 ,𝐺𝑡−1 ,…,𝑎1 ,𝑠1 ,𝐺1∼[− log𝜋𝜙𝑚𝑝𝑝 (𝑚𝑝𝑝,𝑡|⋯)]. (A.6)

The final objective is the sum of the above three objectives: 
𝐽 (𝜙) = 𝐽 (𝜙𝑑 ) + 𝐽 (𝜙𝑙𝑝𝑝 ) + 𝐽 (𝜙𝑚𝑝𝑝 ). (A.7)

The DT model is based on the Transformer architecture (Vaswani 
et al., 2017), which is highly effective for modeling sequential data. 
In our work, we utilized the GPT model, specifically GPT-2 (Radford 
et al., 2018), as the backbone for the DT network. GPT-2 adapts 
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Table A.3
Hyperparameters of DT.
 Hyperparameters Values  
 Batch size 128  
 Learning rate 1𝑒 − 6  
 Weight decay rate 1𝑒 − 3  
 Random seed {0, 1,024, 2,024} 
 Hidden layer dimension 512  
 Embedding dimension 64  
 Number of hidden layers in the Transformer encoder 3  
 Number of attention heads for each attention layer in the Transformer encoder 2  
 Activate function Relu  
 Dropout 0.1  
 Warm-up steps 1𝑒+4  
 Max iteration steps 200  
 Training steps of each interaction 500  
the Transformer architecture by incorporating a causal self-attention 
mask, allowing for auto-regressive generation. Additionally, we per-
formed a grid search to identify the optimal hyperparameters. A com-
prehensive list of these hyperparameters is provided in Table  A.3. 
The implementation of DT refers to https://github.com/kzl/decision-
transformer.

A.4. Behavior cloning

Typically, BC is applied to decision-making problems where the goal 
is to generate effective actions, whereas supervised learning is generally 
used for prediction tasks to align outputs with given labels. Specifically, 
given a training dataset with expected action labels  = {(𝑠, 𝑎)}, the 
objective of BC is to minimize the following function: 

𝐽 = E(𝑠,𝑎)∼[
1
2
(𝑎 − 𝑎̂)2], (A.8)

where 𝑎̂ denotes the action generated by the network (e.g., 𝑎̂ =
argmax𝑎′ 𝜋𝜙(𝑎′|𝑠)). As discussed in Section 4, when dealing with a 
hybrid action space, the policy can be decomposed into a discrete 
component and two continuous components. The objectives for these 
components are constructed using cross-entropy loss and log-likelihood, 
respectively. Consequently, the practical objective optimized by BC is 
as follows:

𝐽 (𝜙) = E𝑠𝑡∼[−
10
∑

𝑖=1
𝑦𝑖 log𝜋𝜙𝑑 (𝑎

𝑑𝑖
𝑡 |𝑠𝑡)] + E𝑠𝑡 ,𝑙𝑝𝑝,𝑡∼[− log𝜋𝜙𝑙𝑝𝑝 (𝑙𝑝𝑝,𝑡|𝑠𝑡)]

+ E𝑠𝑡 ,𝑚𝑝𝑝,𝑡∼[− log𝜋𝜙𝑚𝑝𝑝 (𝑚𝑝𝑝,𝑡|𝑠𝑡)]. (A.9)

In addition, we introduce a variant of BC in this paper, called 
Sequence-based BC, which leverages the powerful sequence modeling 
capabilities of the transformer model. The objective of Sequence-based 
BC is similar to that of DT, with the exception that it does not include 
returns-to-go conditioning, as follows: 

𝐽 (𝜙) =E𝑠𝑡 ,𝑎𝑡−1 ,…,𝑠1 ,𝑎1∼[−
10
∑

𝑖=1
𝑦𝑖 log𝜋𝜙𝑑 (𝑎

𝑑𝑖
𝑡 |⋯)]+

E𝑙𝑝𝑝,𝑡 ,𝑠𝑡 ,…,𝑠1 ,𝑎1∼[− log𝜋𝜙𝑙𝑝𝑝 (𝑙𝑝𝑝,𝑡|⋯)]

+ E𝑚𝑝𝑝,𝑡 ,𝑠𝑡 ,…,𝑠1 ,𝑎1∼[− log 𝜋𝜙𝑚𝑝𝑝 (𝑚𝑝𝑝,𝑡|⋯)].

(A.10)

The network architectures for both BC and Sequence-based BC are 
illustrated in Fig.  A.2.

The BC model and the Sequence-based BC model are built upon an 
MLP network and a GPT-2 model, respectively. The hyperparameters 
for these models are detailed in Tables  A.4 and A.5.
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Table A.4
Hyperparameters of BC.
 Hyperparameters Values  
 Batch size 256  
 Learning rate 1𝑒 − 6  
 Random seed {0, 1,024, 2,024} 
 Hidden layer dimension 256  
 Number of layers 3  
 Activate function Relu  
 Max training step 1𝑒+5  

Appendix B. Additional experimental settings and results

B.1. Domain metrics description

All the used domain metrics are defined as follows:

• Action Difference Rate: To quantify the difference between the 
shot types used in the learned policies and those used in the 
behavior policy, we calculate the proportion of differing shot 
types. This is expressed as: 

Action Difference Rate =
∑

||

𝑖 I{𝑠𝑡𝜋′𝑖 = 𝑠𝑡
𝜋𝛽
𝑖 }

||

, (B.1)

where || represents the total number of actions, and 𝜋′ and 𝜋𝛽
denote the learned policy and the behavior policy, respectively. 
I{𝑠𝑡𝜋′𝑖 = 𝑠𝑡

𝜋𝛽
𝑖 } = 1 if the shot types used are same (i.e., 𝑠𝑡𝜋′𝑖 = 𝑠𝑡

𝜋𝛽
𝑖 ).

• Rally Difference Rate: In addition to the Action Difference Rate, 
we calculate the proportion of rallies that differ. A rally consists of 
multiple actions, and if there is any difference in shot type within 
a rally, the entire rally is considered different. This is expressed 
as: 

Rally Difference Rate =
∑

||𝑟
𝑖 I{𝜋′

𝑖 = 𝜋𝛽
𝑖 }

||𝑟
, (B.2)

where ||𝑟 represents the total number of rallies.
• Irrational Shot Type Rate: In badminton tactical
decision-making, a player needs to choose an appropriate action 
based on their opponent’s action. Only certain shot types are 
considered reasonable responses for a given shot type executed by 
the opponent. For instance, if the opponent executes a smash, it 
is generally not reasonable for the player to return with a smash. 
To identify irrational shot actions, we measured the frequency of 
shot type pairs, consisting of the opponent’s shot type and the 
player’s response, within the dataset. The results are presented in 
Fig.  B.1. We use a threshold frequency 𝑘 to mitigate the impact 
of errors. If the frequency of a shot-type pair exceeds 𝑘, it is 

https://github.com/kzl/decision-transformer
https://github.com/kzl/decision-transformer
https://github.com/kzl/decision-transformer
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Fig. A.2. (a) The architecture of BC. (b) The architecture of Sequence-based BC.
Fig. B.1. The frequency of shot type pairs.
Table A.5
Hyperparameters of Sequence-based BC.
 Hyperparameters Values  
 Batch size 128  
 Learning rate 1𝑒 − 6  
 Weight decay rate 1𝑒 − 3  
 Random seed {0, 1,024, 2,024} 
 Hidden layer dimension 512  
 Embedding dimension 32  
 Number of hidden layers in the Transformer encoder 3  
 Number of attention heads for each attention layer in the Transformer encoder 2  
 Activate function Relu  
 Dropout 0.1  
 Warm-up steps 1𝑒+4  
 Max iteration steps 200  
 Training steps of each interaction 500  
16 
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Table B.1
Average Q-values of the learned policies estimated by FQE.
 Policies Average Q-values↑ 
 CQL with Hybrid Action Space −0.2206 ± 0.0192 
 DT with Winning Goal −1.0415 ± 0.0442  
 DT with Original Goal −1.0467 ± 0.0190  
 BC −0.7355 ± 0.0570  
 Sequence-based BC −0.8367 ± 0.0094  

considered a reasonable situation. The irrational shot type rate 
is then calculated as follows: 

Irrational Shot Type Rate =
∑

||

𝑖 I{𝑠𝑡𝜋′𝑖 ∉ T𝑟𝑒𝑎}
||

, (B.3)

where T𝑟𝑒𝑎 denotes the set of reasonable shot types. In this study, 
we empirically set 𝑘 = 10.

• Active Shot Type Rate: Among all the shot types listed in Table 
1, we identify push/rush, smash, and drop as active shot types 
that can help athletes gain the initiative. We calculate the rate 
at which these active shot types are used by the learned policies 
using the following formula: 

Active Shot Type Rate =
∑

||

𝑖 I{𝑠𝑡𝜋′𝑖 ∈ T𝑎𝑐𝑡𝑖𝑣𝑒}
||

, (B.4)

where T𝑎𝑐𝑡𝑖𝑣𝑒 = {push/rush, smash,drop} represents the set of 
active shot types.

• Out-of-bounds Action Rate: Avoiding hitting the shuttle out of 
bounds is a fundamental tactical strategy that must be adhered to. 
We calculated the percentage of instances where the learned poli-
cies resulted in out-of-bounds shots using the following formula: 

Out-of-bounds Action Rate =
∑

||

𝑖 I{𝑙𝑝𝜋′𝑖 ∈ L𝑜}
||

, (B.5)

where L𝑜 denotes the set of out-of-bounds actions.
• Average Distance between Opponent’s Position and Land-
ing Position (Average Distance of OLP): Commonly, effectively 
mobilizing the opponent is a key strategy in badminton. This mo-
bilization can be partially measured by the distance between the 
opponent’s position and the shuttle’s landing position. Therefore, 
we calculate the average distance between these two points.

• Average Distance between Player’s Position and Movement 
Position (Average Distance of PMP): As the distance traveled 
increases, so does the athlete’s physical exertion. Intuitively, min-
imizing the distance traveled during a game helps conserve en-
ergy. Therefore, we calculate the average distance between the 
player’s current position and their next movement position.

• Average Distance between Court Center and Movement Posi-
tion (Average Distance of CMP): Positioning oneself near the 
center of a badminton half-court aids players in covering the 
entire court effectively. To evaluate how close the next movement 
position determined by the learned policy is to the center of the 
half-court, we calculated the average distance between the court 
center and the movement position.

B.2. Offline policy evaluation via FQE

We utilized FQE (Le et al., 2019), a widely adopted offline policy 
evaluation method, to estimate the average Q-value for each learned 
policy. The results are presented in Table  B.1. It is evident that CQL 
with Hybrid Action Space outperforms the other models, aligning with 
the findings displayed in Table  5.
17 
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