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ARTICLE INFO ABSTRACT
Keywords: Sports data mining is becoming increasingly vital in modern competitive sports, driven by the need for
Badminton

athletes to continuously enhance their performance. Traditional methods of analyzing sports data rely heavily
on expert experience and manual effort, which can be inefficient and unreliable. With advancements in
artificial intelligence (AI), sports data is now being processed autonomously, providing more quantitative
insights and more comprehensive analysis. This paper focuses on the role of tactics in sports, particularly
in badminton, and explores the potential of using Al to enhance badminton tactical decision-making. We
investigate the application of offline reinforcement learning (Offline RL) to develop tactical policies from pre-
collected datasets, addressing challenges including algorithm design and offline policy evaluation. Specifically,
we propose a new variant of conservative Q-learning (CQL), tailored for the hybrid action space to train
tactical policies using the integrated offline dataset Shuttle. To evaluate these policies, we develop a preference-
based reward model that aligns with tactical preferences, offering an alternative to traditional offline policy
evaluation methods. Our computer-based experimental results and analysis demonstrate that the proposed
method achieves higher average rewards than all baseline methods and the behavior policy used for data
collection. This underscores the potential of the proposed method to enhance badminton tactical decision-
making and offer athletes more effective tactical recommendations. Code and data are available at https:
//github.com/Wenminggong/Offline_RL_for_Badminton.

Tactical decision-making
Offline reinforcement learning
Offline policy evaluation

1. Introduction . . . . . .
strategies designed to achieve specific goals in a particular sport. Tech-

nical skills, on the other hand, refer to the ability to control the body to
execute specific movements. Although the effectiveness of tactics varies
depending on the opponent, technical skills are generally considered to
be more closely tied to an individual athlete. In this paper, we will focus
on tactics, investigating how to leverage advanced Al technologies
to make tactical decision-making to enhance an athlete’s chances of

Sports data mining is increasingly playing a crucial role in modern
competitive sports. With “faster, higher, and stronger” as the slogan
of competitive sports, and only one winner in each match, athletes
must undergo extensive targeted training to enhance their performance
continuously. Traditionally, coaches, analysts, and experts have relied
on their professional experience to analyze sports data and design

training programs for athletes. This often involves reviewing match
videos to identify athletes’ weaknesses or adjusting training focus based
on physical test data. However, this method is relatively unreliable and
inefficient, as it heavily depends on expert experience and requires
significant manual effort (Cossich et al., 2023). Nowadays, with the
advancement of artificial intelligence (AI) technology, sports data is
being collected, processed, and analyzed by AI models (Srilakshmi
and Joe, 2023; Wang et al., 2024b; Fernando et al., 2019). This
autonomous process generates more quantitative and comprehensive
reports (Lin et al., 2024). Consequently, more rigorous training and
decision-making recommendations produced by AI models to maximize
winning chance is becoming the future trend.

Commonly, tactics and technical skills are two of the most crucial
aspects of a match (Kolman et al., 2019). Tactics represent high-level

winning.

Particularly, our work focuses on badminton, as it is one of the
most widely recognized and representative competitive sports. In a
badminton match, two players or two teams (each consisting of two
members) compete by alternately hitting a shuttlecock to score points
against each other. The process of hitting involves a series of tactical
decisions (Wang et al., 2023b). For instance, the athlete must determine
the type of shot to execute, such as a net shot or a smash, and decide
on the optimal placement of the shuttlecock. Additionally, after re-
turning the shuttlecock, the athlete must decide on his/her subsequent
positioning to prepare for the next shot. Currently, in academia, Al
models are primarily applied in badminton for match analysis and
stroke or tactical prediction (Wang et al., 2022; Chang et al., 2023; Lin
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et al., 2024). These approaches commonly employ supervised learning
to summarize match situations or predict future shots based on existing
data. Works focused on situation summarization and analysis play a
supporting role in badminton tactical decision-making, as they still
require human experts and coaches to derive effective tactical policies
from the summarized information. To address the inherent inefficiency
and potential instability of this human-dependent process, this work
aims to develop a human-free model that functions as a direct tactical
generator. By leveraging such a model, we seek to eliminate human
involvement in tactical analysis and mining, thereby reducing human
workload and offering more efficient and stable support for badminton
tactical decisions. Although studies addressing stroke or tactical predic-
tion can be used to generate future strokes or tactics, they are generally
trained to replicate behaviors present in the dataset, which often limits
their ability to produce superior tactics for enhancing athlete perfor-
mance. Therefore, this work attempts to explore a novel approach for
generating tactics that outperform those contained in the dataset.

Offline reinforcement learning (Offline RL) as a subset of Al, has
recently gained significant attention due to its successes in various
domains, such as healthcare applications (Nambiar et al., 2023; Zhang
et al., 2023b), chip design (Lai et al., 2023), and robotics (Shah et al.,
2023). Offline RL (also known as batch RL) is an approach that learns
from a pre-collected static dataset without any online interaction with
the environment (Levine et al., 2020). It offers a potential solution
to the challenges posed by impractical online interactions in the real
world of reinforcement learning (RL). From this point of view, Offline
RL is ideally suited for mining badminton tactics, as it does not require
online interaction in either real-world settings or badminton simulators.
Besides, offline RL has been demonstrated to be capable of achieving
a better policy than the behavioral policy used to collect the training
data (Fujimoto et al., 2019). However, two significant challenges arise
when applying Offline RL to badminton tactics mining: modifying the
existing Offline RL algorithm to adapt to the hybrid action space of
badminton tactics, and effectively using offline datasets to evaluate the
learned policies.

Badminton tactical decision-making is a typical hybrid action-space
problem that involves both discrete tactical actions and continuous
tactical actions. While classical Offline RL algorithms are designed for
either discrete action-space problems or continuous action-space prob-
lems, which cannot be applied to badminton tactical decision-making
directly. To address this challenge, we select the advanced Offline RL
algorithm Conservative Q-Learning (CQL) (Kumar et al., 2020) and
modify it to accommodate the hybrid action space. Specifically, we
follow the approach in Delalleau et al. (2019) by decomposing the ac-
tion into discrete and continuous components, while assuming that the
continuous action component depends on the selected discrete action
and that continuous actions are mutually independent. Consequently,
we derive a new variant of CQL termed CQL with Hybrid Action Space.

The challenge of effectively evaluating learned policies using offline
datasets is referred to as offline policy evaluation (OPE) (Qin et al.,
2022). Despite the proposal of numerous OPE methods, their effec-
tiveness in real-world applications remains unverified. The success of
these methods is thought to be influenced by the task, the collected
data, and the learned policy (Fu et al., 2021). Evaluating OPE methods
involves comparing the estimated return with the true return obtained
from a simulator or the real world. Consequently, existing OPE methods
lack guaranteed reliability as policy evaluators when only pre-collected
offline data is available. Therefore, this paper does not utilize OPE
methods for policy evaluation. The objective of the OPE method is
to estimate a policy’s long-term utility (i.e., Q,(s,a) or V,(s)) using a
pre-collected offline dataset, which is challenging. Instead, we focus on
estimating a policy’s short-term reward (i.e., r(s, a)), aiming to identify
a myopic optimal policy. While this approach does not yield the long-
term optimal policy, the myopic optimal policy can still guide athletes’
tactical decision-making for the subsequent single step. To develop
a reward model, we employ preference-based RL to align with the
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preferences of tactical actions. Preference-based RL is a framework for
learning from pairwise preference feedback (Christiano et al., 2017),
and has recently shown success in domains such as robotics (Liu and
Chen, 2022) and large language models (Ouyang et al., 2022). The
preferences for tactical actions (e.g., preferring the action sequence of
the winner over that of the loser in a rally) naturally arise from the
offline dataset and are used as an optimization objective to train the
reward model.

Specifically, we combine two existing badminton datasets, Shuttle-
Set (Wang et al., 2023b) and ShuttleSet22 (Wang et al., 2023a), into
a larger dataset referred to as Shuttle in this paper. Using Shuttle, we
train tactical decision-making policies with the proposed CQL with Hy-
brid Action Space and four other baselines. Concurrently, we develop a
reward model to align with the preferences of tactical actions and use
this model to evaluate the learned tactical decision-making policies by
estimating their average reward. The experimental results demonstrate
that the reward model generalizes well to the test set. According to the
reward model, all the learned tactical policies achieve higher average
rewards than the behavior policy used to generate the offline data.
Particularly, CQL with Hybrid Action Space delivers the best perfor-
mance, highlighting its superiority in enhancing badminton tactical
decision-making. The main contributions of this work are concluded
as follows:

» To the best of our knowledge, this work is the first attempt to
explore the potential of using Offline RL to enhance badminton
tactical decision-making.

Instead of viewing badminton tactical decision-making as a turn-
based sequence decision problem, we formulate it as a player-
based Markov Decision Process (MDP), offering a standard frame-
work for RL. Furthermore, to accommodate the hybrid action
space inherent in badminton tactical decision-making, we develop
a variant of the offline RL algorithm: CQL with Hybrid Action
Space. We demonstrate that this variant can be effectively applied
to real-world badminton tactical decision-making scenarios.
Based on offline data, we propose to use a preference-based
reward model to evaluate the trained tactical policies. Although
this model evaluates only the myopic optimality of a policy, it
serves as a viable alternative to existing OPE methods, which lack
guaranteed reliability.

Experimental results and analysis indicate that the tactical policy
derived from CQL with Hybrid Action Space achieves significantly
higher average rewards than that of the behavior policy used
to generate the offline data and other baselines, which shows
the potential value of this approach to be applied for badminton
athletes’ tactical training and recommendation.

The rest of the paper is structured as follows. Firstly, we discuss
the related works in Section 2 and present the problem statements and
modeling in Section 3. Then, we systematically introduce the proposed
method tailored to the hybrid action space of badminton tactics and
preference-based offline policy evaluation in Section 4 and Section 5,
respectively. In Section 6, the experiments are detailed, with the results
and discussions showing Offline RL has the potential to enhance bad-
minton tactical decision-making. Section 7 presents the limitations of
this work and the corresponding future research directions. Conclusions
are given in Section 8.

2. Related works

In this section, we start by exploring recent applications of Al tech-
nologies in badminton, highlighting advancements in game analysis
and stroke or tactical prediction, while also noting their limitations in
active decision-making. We then discuss the development of Offline RL
and its potential for enhancing tactical decision-making in badminton.
Following this, we examine methods for OPE, which are crucial for



M. Liu et al.

assessing learned policies when neither online nor simulator inter-
actions are possible. Finally, we delve into preference-based reward
learning, focusing on leveraging pairwise preferences to develop a
reward function, which has the potential to replace traditional OPE
methods and address their reliability issues.

2.1. Badminton data mining

Various Al technologies have been employed for game analysis and
stroke or tactical prediction in badminton. Leveraging advanced com-
puter vision, the court, players, and shuttlecock can be autonomously
and accurately detected in videos, with the shuttlecock’s movement
being effectively tracked (Yang et al., 2024; Chu and Situmeang, 2017).
These detection and tracking capabilities allow for the automatic seg-
mentation of videos into distinct sets and rallies, enabling the removal
of break times or transitional video clips (Huang et al., 2022). Addition-
ally, match data, such as player scores and shot location distributions,
can be automatically summarized (Lin et al., 2024). Furthermore,
virtual reality (VR) technology facilitates the reconstruction of 3D
game views, enhancing the comprehensive analysis of game details (Lin
et al., 2024). The advancement and application of these Al technologies
offer numerous benefits, including automated large-scale data collec-
tion (Wang et al., 2023b,a), improved viewing experience during live
broadcasts, and more effective training and match preparation for
athletes and coaches. Although current methods can facilitate bad-
minton tactical decision-making, they primarily serve as support tools.
A coach or expert is still needed to refine and finalize effective tactical
decisions that can help athletes win matches, using the data sum-
marized by the AI models. To minimize reliance on human experts,
it is valuable to train AI models to generate effective tactical deci-
sions directly from offline data. To gain insights into tactical usage,
Al models have been developed to classify tactical types or predict
forthcoming tactics. Specifically, support vector machines (SVM) were
utilized for stroke classification (Chu and Situmeang, 2017) and trans-
former encoder-decoder models were used to predict future strokes and
landing positions based on previous rally actions (Wang et al., 2022;
Ibh et al., 2024). Additionally, a graph-based forecasting model was
proposed to further predict movement positions (Chang et al., 2023).
To predict future strokes, landing positions, and movement positions
simultaneously, a strong hierarchical imitation learning model was em-
ployed (Wang et al., 2024a). While such predictive models are capable
of generating tactical decisions, their training is often oriented toward
replicating the strategies within the dataset. This makes it difficult
for them to produce superior tactics that effectively enhance athlete
performance, as they are not inherently optimized for creating novel
winning strategies.

2.2. Offline RL

RL offers an online learning paradigm, which encounters significant
challenges when online interaction is impractical. To address this,
Offline RL was introduced (Levine et al., 2020). Offline RL follows a
data-driven learning paradigm, relying solely on previously collected
offline data. Although off-policy RL algorithms can learn from offline
data naturally, they often struggle to learn effectively from entire
offline datasets due to a serious issue: distributional shift (Levine
et al., 2020). For instance, although the soft actor-critic (SAC) algo-
rithm (Haarnoja et al.,, 2018) can utilize data collected by previous
policies to update the current policy, it fails to learn on static and
offline data (Kumar et al., 2019). To mitigate this, several algorithms
have been proposed. Fujimoto et al. introduced a batch-constrained
RL algorithm that forces the policy to behave closely to behaviors of
the given data by restricting the action space within a subset of the
given data (Fujimoto et al., 2019). Kumar et al. devised conservative
Q-learning (CQL), which incorporates a simple Q-value regularizer into
the standard Bellman error objective to reduce value overestimation
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caused by distributional shift (Kumar et al., 2020). To balance im-
proving the behavior policy and minimizing deviation from it, implicit
Q-learning (IQL) was developed, utilizing a state-conditional upper
expectile to estimate the optimal Q-value in that state (Kostrikov et al.,
2021). To enhance policy robustness and minimize model bias, dy-
namics models were incorporated into Offline RL for policy evaluation
during training (Swazinna et al., 2021). Another way to address the
challenge of learning without online interaction is by modeling the RL
problem as a sequence generation problem. This approach leverages
high-capacity sequence prediction models, such as Transformer, to
generate action sequences that yield high rewards. Notable examples
include the decision transformer (Chen et al., 2021) and the trajectory
transformer (Janner et al., 2021). The decision transformer conditions
an autoregressive model on the expected return, past states, and actions
to generate future actions that achieve the expected return, while
the trajectory transformer employs beam search to generate future
actions. With advancements in effective Offline RL algorithms, Offline
RL has been increasingly applied to real-world decision-making prob-
lems. Shah et al. introduced the first Offline RL system for robotic
navigation, capable of reaching distant goals (Shah et al., 2023). In
treatment optimization, where active interaction is restricted, Offline
RL has been used to develop effective policies for the treatment of
diabetes and sepsis (Nambiar et al., 2023) and the recommendation of
ventilator parameters (Zhang et al., 2024). For chip placement, Offline
RL has been employed to learn a transferable placement policy that
enhances placement quality (Lai et al., 2023). Inspired by these suc-
cessful applications, this paper explores the potential of using Offline
RL in badminton tactical decision-making.

2.3. Offline policy evaluation

Policy evaluation is crucial not only for selecting the optimal
learned policy for deployment in online systems but also for assessing
the effectiveness of policy learning algorithms, thereby facilitating
their development. In the context of Offline RL, policy evaluation
must be conducted using solely offline collected data, without any
online interaction. To address this, various methods have been devised
to estimate the expected return of the learned policy x. Fitted Q-
Evaluation (FQE) directly fits a neural network to estimate the expected
return by bootstrapping from Q(s’, z(s")) (Le et al., 2019). A model-
based approach considers learning dynamics and reward on transitions,
utilizing simulated trajectories generated by the learned policy under
the dynamics model to compute the policy’s return (Zhang et al.,
2021). Additionally, importance sampling conducted by a learned
behavior policy can be used to estimate the return. Kostrikov and
Nachum utilized self-normalized step-wise importance sampling for
this purpose (Kostrikov and Nachum, 2020). To reduce estimation
variance, Thomas and Brunskill performed weighted doubly-robust
policy evaluation (Thomas and Brunskill, 2016). Importance weights
can also be computed without learned behavior policies, using a saddle-
point objective (Yang et al., 2020) or a variational power iteration
algorithm (Wen et al., 2020). However, existing OPE algorithms do not
consistently perform well across a range of simulated tasks (Fu et al.,
2021). Furthermore, in a near real-world benchmark (i.e., NeoRL),
current OPE methods struggle to select the optimal policy (Qin et al.,
2022). Therefore, it is essential to explore alternative methods for
offline policy evaluation.

2.4. Preference-based reward learning

Preference-based RL is a framework for learning from pairwise
preference feedback without predefined numerical rewards. One rep-
resentative method involves learning a reward function from pairwise
feedback to replace handcrafted numerical rewards, followed by policy
optimization based on this learned reward function (Christiano et al.,
2017). Typically, pairwise feedback is derived from human preferences,
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Fig. 1. Illustration shows a badminton rally consisting of four strokes. From a bird’s-eye view, Player A and Player B are positioned on opposite sides of the
court, each returning two strokes to form the rally. The court is drawn to scale, reflecting the actual dimensions of a badminton court, with white lines indicating

the boundaries and a black line representing the net.

requiring at least one human to label preferences between two agent
actions or behaviors. Due to the high cost of human feedback in
real-world scenarios, poor sample and human feedback efficiency are
significant challenges in preference-based RL. To address these issues,
an off-policy preference-based RL algorithm was introduced, utilizing
relabeled historical experiences and unsupervised pre-training (Lee
et al., 2021). Additionally, integrating expert demonstrations and pair-
wise feedback has also proven effective in enhancing the efficiency
of preference-based RL (Ibarz et al., 2018; Palan et al.,, 2019). A
high-efficiency exploration method was developed by considering un-
certainty from the reward function (Liang et al., 2022). Recently,
to accommodate non-Markovian rewards, a neural architecture using
transformers to model human preferences, known as the Preference
Transformer, was proposed (Kim et al., 2023). These advancements
have facilitated the application of preference-based RL in areas such
as Atari games (Christiano et al., 2017; Ibarz et al., 2018) and human—
robot interaction (Liu and Chen, 2022). Notably, this approach has been
shown successful in fine-tuning large language models to match human
preferences and intentions (Ouyang et al., 2022), attracting significant
attention with the success of large language models like ChatGPT.
In a badminton match, there is a natural preference for the tactical
behaviors of the winner over those of the loser. This preference enables
the development of a reward function that can serve as an alternative
to classical OPE methods for evaluating tactical policies.

3. Problem formulation

In this paper, we focus exclusively on the single-player game of bad-
minton, despite the sport also encompassing doubles matches with two
teams of two members each. Typically, a badminton match comprises
two or three sets, with victory awarded to the player who first wins
two sets. Each set includes a minimum of 21 rallies, where two players
alternately return strokes to form a rally. The player who wins a rally
earns one point, and the first to reach 21 points claims the set. As shown
in Fig. 1, there is an example of a rally consisting of four strokes, where
Player A initiates the service and Player B ultimately scores the point
after four alternating stroke returns. This alternating stroke process is
referred to as a turn-based sequential decision process (Wang et al.,
2022). Clearly, a player’s decision-making encompasses both tactical
decision-making and the execution of technical skills. In this paper, we
concentrate on the tactical decision-making aspect and disregard the
execution of professional skills necessary to implement the intended
tactics.! To formally define the tactical decision process, we designate

! In reality, tactics represent higher-level behaviors that require athletes
to control their bodies to perform specific movements associated with these
tactics. However, in this paper, we focus solely on tactical decision-making and
omit the physical execution process. In other words, we assume that athletes
can flawlessly execute any given tactics.

Player A as the serving player and Player B as Player A’s opponent,
using M, to represent a match between Player A and Player B. A
rally is denoted as R, assuming the match comprises » rallies, we have
My = {R;}_,. Furthermore, the ith rally is composed of a sequence
of strokes, represented as R; = {St4, Stf s Stg‘, ...};- In essence, a stroke
is a decision-making process where the player selects an appropriate
action based on his/her current state, thus a stroke can be expressed as
a state-action pair, i.e., St} = (s;“”’, a;””')“", where w represents Player
A or Player B, and Ri = {(Sturn, aturn)A, (Stzurn’aturn)B’ (sgurn’ agurn)A’ }l
According to Wang et al. (2024a), the state s"" comprises the current
position coordinates of the active player and his/her opponent, repre-
sented by s"™ = (pc,, pc,), where -, and -, are used to denote specific
attributes of the active player and his/her opponent, respectively. The
action a™™ includes the shot type executed by the player, the intended
landing position of the shuttle, and the player’s subsequent move-
ment position, represented by a"™ = (st,,/p,,mp,). In this paper, all
positions are continuous two-dimensional coordinates represented by
(x,y),% and 10 shot types are defined by domain experts to distinguish
the strokes (Wang et al., 2022), with details provided in Table 1.

However, the turn-based sequential decision-making process in-
volves two agents taking actions alternately. To further formulate this
problem as a MDP, we focus on the decision-making of one player
in a rally, treating the other player’s actions as part of the state of
the decision-making player. This MDP is referred to as a player-based
MDP in this paper. Specifically, the player-based MDP is defined as
a tuple (S, A,T,r,y)¥, where w € {A, B} denotes the player under
consideration. Here, S is a set of states. Each state s?@*" e S in-
cludes not only the current position coordinates of the player and
his/her opponent but also the opponent’s last action, ie., s”/“¢ =
(7, al!y = (peyss PCoys Stos—151D04-1)-° A is @ set of actions. Each
action a?/%" € A corresponds to a turn-based action, represented as
af’”y " = (stp.Ip,..mp,,). Typically, A is a hybrid action space with
discrete stroke types and continuous two-dimensional coordinates. To
simplify the expression, unless otherwise specified, (s;,q,) in the fol-
lowing text refers to (s layer af’“y “"). The transition function T describes
the probability distribution in the form T'(s,,,ls;. q,), which transitions
current state s, into next state s,;. r : S X A — R defines the reward
function. In this paper, we define r as follows:

0
r(s,, a;) = +1

2 The specific definitions of the continuous two-dimensional coordinates
will be given in Section 6.1.

3 In the turn-based sequential decision process, assuming that the ¢th stroke
is executed by Player A, i.e., St = (s, a™™")*, then the (¢ — 1)-th stroke must
have been executed by Player B, i.e., St? = (s/", a5, At time frame 1,
Player A is the active player, so (st,,_;,!p,, ;. mp,, ) is used to represent the
opponent’s action of Player A (i.e., the action of Player B) at time frame 7 — 1.
Additionally, we omit mp,,_; because mp,,_; is equivalent to pc,,.

t # terminal
(€]

t = terminal
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Table 1
Shot types and their meanings.
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Shot type Descriptions

short service
long service

Serve that crosses over the net and lands close to the short service line.
Serve that arcs high and lands deep in the opponent’s backcourt.

net shot Gentle shot that positions the shuttlecock near the net.

clear Overhead shot where the player hits the shuttlecock from one end of the court to the opposite end.

push/rush Shot pushed from near the net to reach the backcourt, or a downward shot from near the net designed to land quickly.
smash Quick, downward-angled shot executed with an overhand motion.

defensive shot Shot taken when the opponent hits the smash or drive.

drive Swift and flat shot that travels just above the net, serving both offensive and defensive purposes.

lob Defensive shot usually executed from the front of the court by pushing the shuttlecock high and deep to the back of the

opponent’s court.

drop Shot that positions the shuttlecock near the net, often to force the opponent to move or to set up the next play.

rollout data {(s;, a;, s, 1)}

Update

T+

Tr+1

(a) Classical Online RL.

(s, a,50,1)}

Data collected
with any policy

Buffer D

Training phase

(b) Offline RL.

Deployment

Fig. 2. Pictorial illustration of classic online RL versus offline RL. In online RL, the policy z, is continuously updated using streaming data collected by =,
itself through ongoing environment interaction. In contrast, offline RL relies solely on a fixed dataset collected in advance by some behavior policy z;. The
training process utilizes only this offline data without any further interaction with the environment, and the trained policy is deployed only after training is fully

completed.

This implies that only the terminal step has a non-zero reward: the re-
ward is 1 if the decision-making player scores a point, and -1 otherwise.
y € (0,1] is a reward discount factor. According to this definition, a
turn-based rally can be divided into two player-based trajectories, such
that R; = {z4,78},, where

W= {(Sll)layer’ a;[)layer’ " )w’ (Sglayer’ aglayer’ rz)w

s (SRR ) w € (A, BY. @

Based on the defined player-based MDP, our goal is to identify an
optimal policy, denoted as z*, that maximizes the expected long-term
discounted rewards (Sutton and Barto, 2018):

* T
* = argm’?xIan,,(aAS!) Zr:() y’r(s,,a,)] . 3)

As illustrated in Fig. 2, the difference between the classical online RL
and offline RL is presented. The absence of both online interaction and
a simulator prevents classical online RL methods from being directly
applied to train tactical policies. Specifically, we only have access to
a pre-collected dataset D = {(s;, a,, s;, r.)} derived from match records,
where s; denotes the state at time ¢ + 1. Therefore, Offline RL becomes
the suitable approach for training tactical policies. Our objective is to
derive an optimal policy #* and evaluate its performance using this
offline dataset. Once obtained, the optimal policy z* can function as
an automated badminton tactic generator, supporting athlete training
and performance enhancement.

4. Offline RL with hybrid action space
4.1. RL preliminaries

One representative approach to optimizing the RL objective in Eq.
(3) involves estimating either a state-value function or a state-action

value function. The state-value function V,(s,) represents the expected
discounted cumulative reward obtained by following policy # starting

from state s,, while the state-action value function Q,(s,, a,) represents
the expected discounted cumulative reward obtained by following pol-
icy r starting from the state-action pair (s, q,). Formally, these value
functions are defined as (Sutton and Barto, 2018):

T
Vi(s) = Ef~px(f\:z) |:z yt’_tr(st” ar’):| s ()]

=t

T
Qn(st’ at) = IE‘r~p,,(‘r|s,,a,) |:Z J/t’_tr(st’: ax/):| > ()
t'=t
where 7 = (s,,q,,...,sp,ar) denotes a trajectory consisting of a se-
quence of states and actions sampled according to policy x, and p,(-)
represents the trajectory distribution. In the Offline RL setting, the
dataset D typically does not contain all possible state transitions. We
therefore define the empirical Bellman operator as (Kumar et al., 2020):

BT O(s.@) = (8, 0) + VBt (et |5).5' 1 5.0 [ QT )] (6)

Standard RL algorithms generally alternate between two key steps
to obtain an optimal policy: policy evaluation and policy improve-
ment (Sutton and Barto, 2018). These steps can be formulated as (Ku-
mar et al., 2020):

O < arg inn Ey oy [(Bﬁk O*(s,a) — Q(s,a))z] , @]

A arg max Eyp.a~r(als) [QA"“(s,a)] R (8)

where QO and # denote the estimated state-action value function and
its corresponding optimal policy, respectively.

4.2. Conservative Q-learning with hybrid action space

Badminton tactical decision-making involves both discrete and con-
tinuous tactical behaviors, classifying it as a hybrid action-space prob-
lem. In this section, we focus on the advanced Offline RL algorithm:
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conservative Q-learning (CQL) (Kumar et al., 2020) and develop a
variant of CQL specifically adapted for the hybrid action space.

The distributional shift between the learned policy and the policy
that collected the data is one of the major challenges of Offline RL.
Applying existing value-based off-policy RL algorithms directly in an
offline setting often leads to overestimation of the value function
because of bootstrapping from out-of-distribution actions and errors in
function approximation. To learn a conservative estimate of the value
function, CQL was proposed (Kumar et al., 2020) to provide a lower
bound on the true values. To establish a lower bound for the state-
value function in a policy z(als), such that E,,,[0,(s.a)] < V,(s),
we can introduce an additional regularization term during the policy
evaluation step (Kumar et al., 2020), as follows:

0! — arg inn a“”(ESNDY‘,N,,(a‘x)[Q(S, a)] - E5~D,a~nﬂ(u|s)[Q(S’ a)])
I 35 o .
EJE:,H,S/NDKB 0"(s,a) — O(s,2)], (C)]
where 7;(als) represents the behavior policy used to collect the dataset
D, and a°? > 0 is a trade-off factor. To reduce computational cost, the
one-step policy evaluation is further derived as follows (Kumar et al.,
2020):

O — arg rnQin a*?E,_pllog Z exp(Q(s, @) = By (a1) [Q(s. )]

+

+ 3wl (B 05(5,0) — Qs @) 10

CQL is compatible with any off-policy RL algorithms. In this work,
we concentrate on the soft actor-critic algorithm (SAC) (Haarnoja
et al., 2018). Taking entropy regularization into account during policy
evaluation, the policy evaluation step is presented as follows:

0! —arg ngn vaIESND[log Z exp(0(s, a)) — EaN,,ﬂ(u|S)[Q(s, a)ll+

%ES,G’S/ND[(r(s, @) + 1 Byt QX (5", )] an

+ " H(# () - OCs, @),

where a®" is a temperature parameter used to balance the trade-off be-
tween policy entropy and reward, and H(x) denotes the policy entropy.
Besides, the policy improvement can be derived as follows (Haarnoja
et al., 2018):

#* < arg min E,_p[~a"H(x(als)) - Eyr(aysy [0 (s, @)1 12)

As discussed in Section 3, we consider a hybrid action space com-
prising discrete stroke types and two kinds of continuous
two-dimensional coordinates: the intended landing position of the
shuttle and the player’s subsequent movement position. For simplicity,
we denote the discrete and continuous parts of the action as «? and «¢,
respectively. Intuitively, we assume that the continuous action com-
ponent depends on the chosen discrete action, and that the intended
landing position of the shuttle and the player’s subsequent movement
position are independent. According to Delalleau et al. (2019), the
policy can be decomposed as follows:

— d c d
w(als) = x(a®|s)x(a|s, a”) 13)
= n(sty|s)m(Upyls, st,)m(mp,|s, stp).
Furthermore, the policy entropy in Egs. (11) and (12) can be calculated
as follows (Delalleau et al., 2019):

H(x(als)) = H(x(a"|s)x(a"|s,a")) = H(ﬂ'(adIS))+Z (@ |s)H (x(a’]s,a")).
ad

a4

To prevent one of these two entropies from overshadowing the other,

we can employ two weighted factors af and «f", to promote explo-

ration for both discrete and continuous actions, respectively (Delalleau
et al., 2019).

H(x(als)) = aZ"H(n:(ad [$)) + ag" Z m(a®|syH(x(a®|s, a®)). (15)

d
For clarity, CQL with Hybrici2 Action Space is detailed in Algorithm
1.
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Algorithm 1: CQL with Hybrid Action Space

1 Initialize Q-function Q,, and policy 7.

2 for each training timestep t do

3 //POLICY EVALUATION

4 Updating the Q-function Q, by taking gradient steps on the
objective outlined in Equation (11).

5 // POLICY IMPROVEMENT

6 Enhancing the policy z, by taking gradient steps on the
objective outlined in Equation (12).

7 end

5. Preference-based offline policy evaluation
5.1. Myopic policy evaluation

In Offline RL settings, where online interaction is limited or unavail-
able, traditional Off-Policy Evaluation (OPE) algorithms such as Fitted
Q-Evaluation (FQE) (Le et al., 2019), model-based methods (MB) (Fu
et al., 2021), and importance sampling methods (IS) (Fu et al., 2021)
are often considered to lack guaranteed reliability (Qin et al., 2022;
Fu et al., 2021). This is because evaluating an OPE algorithm typically
requires comparing the estimated long-term reward V, (s,) with the true
long-term reward V,(s,) through online interaction, either in the real
world or a realistic simulator. Furthermore, estimating the long-term
reward of a policy involves bootstrapping the Q-function, as in FQE,
learning a transition model to simulate environment dynamics, as in
MB, or first learning a behavior policy, as in IS. These approaches
involve multi-step estimations to compute a single value, which may
lead to error accumulation. As a result, estimating long-term rewards
using solely from an offline dataset poses a considerable challenge.
To tackle this, we propose an alternative approach: myopic policy
evaluation, which focuses on estimating the one-step reward for the
learned policy. This method avoids the error accumulation problem.
We will next present the formulation of the myopic policy evaluation
and explain why the myopic policy remains valuable in the context of
badminton tactical decision-making.

In contrast to the optimal long-term policy derived from Eq. (3), the
optimal myopic policy focuses on maximizing the immediate, one-step
reward, defined as follows:

n::lyopic (als) = arg max r(s,a),Vs € S. (16)

Correspondingly, evaluating the myopic policy in the offline settings
just needs to estimate the average reward:

FAVG =By p gurlf(s, @), a7)

where 7(s, a) represents a generalized estimated reward. Once the op-
timal myopic policy T opic 1S learned, it can be used to determine
the best tactical action based on the current or historical situations.
This approach is particularly useful in scenarios such as analyzing
game video recordings of a player. The myopic policy can generate a
sequence of one-step optimal actions, which serve as reference actions
for the player to enhance their performance. By focusing on immediate
rewards, the myopic policy provides actionable insights that can be
directly applied to improve decision-making in real time, offering a
practical tool for tactical refinement and strategic planning.

5.2. Preference-based reward learning

According to Eq. (17), the evaluation of the myopic policy depends
on a generalized estimated reward function. In the context of the
reward function defined in Eq. (1), only the terminal step of a rally
yields a non-zero reward. However, in autonomous decision-making,
it is challenging to predict whether a given action will conclude a
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rally due to the absence of environmental dynamics. Consequently,
Eq. (1) cannot be directly used as the evaluation reward. Inspired
by the observation that there are some preferences between different
players’ tactical decisions, for example, we favor the tactical decisions
of the winner, as they are more likely to maximize the chances of
winning. We explore preference-based RL, which substitutes numerical
rewards with preferences between two tactical decision-making seg-
ments (Christiano et al., 2017). Formally, a decision-making segment is
a sequence of states and actions {(s;, ay), (Sgi1>@xg1)s - > (Sppms Qi) }-
Given that rallies in badminton are relatively short (with an average
length of 10), we propose using the entire player-based rally % =
{(Sflayer’ allilayer)w, (Sglayer’ aglayer)w, o (Sl;ﬂluyer, a;;layer)w}7 w € {A,B) to
establish preferences.

Assuming we have a pair of rallies from Player A, and Player B,:
(z%0,750), the preference can be expressed as pr’ = (z% > 7Po) to
indicate that rally 4o is preferred over 7%, or pr® = (zB0 > 740) to
indicate that rally 7% is preferred over z40. Intuitively, rallies employ-
ing more effective tactics should yield higher cumulative rewards. The
learned reward function must adhere to this principle. Following the
approaches of Christiano et al. (2017) and Liu and Chen (2022), we
use the learned reward function 7 to model the preference predictor
for a pair of rallies according to the Bradley-Terry model (Bradley and
Terry, 1952):

T . A A

eXp Zr:() Fy(siha )
— .
Zwe(A,.B,) exp X, Fy (5, a)")
To align the preference predictor with the provided preference feed-
back, we treat the reward learning process as a binary classification
problem. Specifically, the reward function #,, parametrized by w, is

updated to minimize the following cross-entropy loss (Liu and Chen,
2022):

PW[TAi > TB,] = (18)

Jw) = —Ea; 5, pirp [ 1pr' = &% > 28} log P, [c4 > o]
+X{pr' = (c% > t)} log P, [c5 > 4] ] . 19)

6. Experiments

To assess whether Offline RL can develop a superior badminton tac-
tical decision policy compared to the behavior policy* used to generate
the offline data, we present the results of a series of experiments in
this section. First, we detail the data processing steps in Section 6.1,
which aim to produce a larger and high-quality player-based badminton
dataset for policy training and evaluation. Using this offline dataset,
we trained a generalized reward model and several tactical policies.
We then employed the reward model to evaluate the myopic average
rewards of the learned tactical policies. The details and main results
are presented in Section 6.2. Finally, we present deeper analyses and
discussions in Section 6.3 to provide clear insights about what tactical
behaviors contribute to the improvement of tactical decision-making.

6.1. Data preprocessing

ShuttleSet is a publicly accessible turn-based singles badminton
dataset containing stroke-level records, aimed at encouraging research
in badminton stroke prediction (Wang et al., 2023b). It includes data
from 44 international badminton matches conducted between 2018 to
2021, featuring 27 top-ranking men’s and women’s singles players. Un-
like datasets generated autonomously, ShuttleSet relies on annotations
from domain experts, providing detailed descriptions of badminton

4 The offline dataset was collected from a series of international matches
performed by multiple top players, simplify, we use the term “the behavior
policy” throughout the paper to denote the tactical policies employed by all
the players in the collected matches.
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matches and ground truth features such as stroke types and shuttle
landing coordinates. To further expand the dataset, ShuttleSet22 (Wang
et al., 2023a) was collected using the same labeling tools and similar
stroke-level data formats as ShuttleSet. ShuttleSet22 includes 58 in-
ternational badminton matches from 2022, involving 35 top-ranking
singles players. In this paper, we integrated these two datasets into a
larger dataset referred to as Shuttle. Consequently, Shuttle encompasses
a total of 94 international badminton matches from 2018 to 2022 and
includes 43 top-ranking singles players.®

Due to the presence of flawed data in the dataset, it is necessary to
perform data screening and filtering to ensure that only high-quality
data is retained for analysis and model training. We applied a series
of criteria to filter the data, with each criterion and the resulting data
quantities detailed in Table 2. This process resulted in 5416 valid rallies
for training and evaluation. We split the dataset into a training set,
validation set, and test set with a ratio of 7:2:1. This division ensures
that the validation and test sets include data from players not present
in the training set, allowing us to assess the model’s generalization
performance. The statistical results of these three datasets are shown
in Table 3.

Both ShuttleSet and ShuttleSet22 are based on a turn-based sequen-
tial decision process, where a rally is formulated with two players
alternately returning strokes. Considering the player-based MDP, we
need to convert these turn-based rallies into player-based rallies. As
mentioned in Section 3, each turn-based rally can be converted into
two player-based rallies, so the number of player-based rallies in the
Shuttle dataset will double. Specifically, the training set, validation
set, and test set contain 3,930 x 2 = 7,860, 904 x 2 = 1,808, and
582 x 2 = 1,164 rallies, respectively. However, during a match, the
two competing players stand on opposite sides of the court, resulting in
different coordinate distributions for each player.® Using these original
coordinates directly for model training can result in poor performance
due to inconsistencies in coordinate distributions. To address this issue,
we utilized the symmetry of the court to normalize the coordinates.
As shown in Fig. 3, when a coordinate should be located on the right
side of the court, we use o, as the coordinate origin and normalize this
coordinate with ¥ = X”[X, 5 = 2= Conversely, when a coordinate
should be located on the left side, we use o, as the origin and normalize
it with x = — Ly = a7 After normalization, all coordinates will
follow the same distribution. In this case, the normalized coordinates
x € [0,1] and y € [0,1] indicate in-bounds areas; otherwise, they are
out of bounds.

6.2. Experimental settings and main results

6.2.1. Preference-based reward learning

In addition to the standard Bradley-Terry model shown in Eq. (18),
we also examined a variant referred to as the Normalized Bradley-Terry
model, formulated as follows:

1 Tai o, A A
exp o tho Py (sp ' a )

P4 > B = (20)

1 Ty 4 ) ’
Zwe{A,,B,) eXp 7~ Z,=0 I G
In this model, 7, represents the length of a player-based rally 74i. The
length normalization is employed to mitigate the adverse effects caused
by differences in rally lengths.

5 There are 8 duplicate matches and 19 duplicate players between Shut-
tleSet and ShuttleSet22. When combining these datasets, duplicates were
removed, resulting in a final match count in Shuttle that is less than the sum
of the two datasets (i.e., 94 < 44 + 58), and a final player count that is also
less than the total number of players in the two datasets (i.e., 43 < 27 + 35).

¢ Both ShuttleSet and ShuttleSet22 provide positions with two-dimensional
coordinates on the image plane. Furthermore, they provide homogra-
phy matrices to transform these image-plane coordinates into court-plane
coordinates.
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Table 2
Data filtering procedures.
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Process descriptions Rally num Action num
Original dataset. 7,888 81,939
Removing the rally contains the action marked as flaw. 6,051 65,167
Removing the rally contains the action without getpoint player label. 6,040 65,021
Removing the rally contains the action without shot type label or shot type=unknown. 6,033 64,987
Removing the rally contains the action without location information. 5,973 64,829
Removing the rally contains the action with lose reason=unknown. 5,966 64,749
Removing the rally contains the action with lose_reason=misjudged. 5,790 63,047
Removing the rally contains the action marked as out while landing coordinate belongs to the inside 5,722 62,304
area.
Removing the rally contains the action marked as in while landing coordinate belongs to the outside 5,701 62,128
area.
Removing the rally contains the action marked as no_passing half court while landing coordinate belongs 5,429 59,377
to the half count of the opponent.
Removing the rally contains the action where the distance between the hitting coordinate and the 5,429 59,377
player_coordinate is larger than the range of half court.
Removing the rally contains non-monotonic time frames. 5,416 59,472
Table 3
Statistical results of the training set, validation set, and test set.

Items Training set Validation set Test set

Match num 67 18 8

Rally num 3,930 904 582

Player IDs not present in the training set - {1,4,32,38,42} {2,3,21,26}

Fig. 3. Illustration of the coordinate normalization.

As discussed in Section 5.2, we utilize the entire player-based rally
to establish preferences. Intuitively, the winner’s tactical decisions are
favored over the loser’s in a rally. We pair the player-based rallies
from the same turn-based rally into a preference pair, labeling the
preference based on which player wins the rally point. Specifically,
if Player A wins the current rally, the preference will be labeled as
(z4 > 7B); otherwise, it is (¢ > 74). This is referred to as rally
preference, which is the primary preference used to train the reward
model. Besides, we consider another preference called non-terminal
rally preference. This preference excludes the terminal action in a turn-
based rally and then is constructed similarly to the rally preference. The
goal of establishing the non-terminal rally preference is to enable the
learned reward function to identify the superior player-based rally even
without considering the terminal action in the turn-based rally.

To evaluate which preference predictor and which preference design
is better, we compared various settings. All the settings are listed as
follows:

+ Bradley-Terry model with rally preference (BT _Rally): Using
the Bradley-Terry model to predict preferences and training the
reward model solely with rally preferences.

+ Bradley-Terry model with rally preference and non-terminal
rally preference (BT Rally2): Utilizing the Bradley-Terry model
to model the preference predictor and using both rally preferences

and non-terminal rally preferences to train the reward model. For
a batch of training data, we derive rally preferences and non-
terminal rally preferences simultaneously and combine the loss
functions from these two preferences by a scalar factor a,,/,
i'e" Er(llf) = Erally(l//) + aprefEnon»rerminal_rally(lll)'

Normalized Bradley-Terry model with rally preference
(NBT _Rally): Utilizing the normalized Bradley-Terry variant to
model the preference predictor and only using rally preferences
to train the reward model.

Normalized Bradley-Terry model with rally preference and
non-terminal rally preference (NBT_Rally2): Utilizing the nor-
malized Bradley-Terry variant to model the preference predictor
and using both rally preferences and non-terminal rally prefer-
ences to train the reward model. The loss functions from these
two preferences are combined in the same way as BT Rally2.

We trained the reward models to minimize the objective specified in
Eq. (19) using the training set. The training process was conducted with
three random seeds, and the network architecture and hyperparameters
of these models are detailed in Appendix A.1. Upon completing the
training phase, we evaluated the performance of the learned reward
models on the test set. As detailed in Table 3, the test set includes
both players who appeared in the training data and those who did not.
To examine potential performance variations between in-distribution
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Table 4
Evaluation results of reward models.
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Settings In-distribution Scenarios Out-of-distribution Scenarios

RP Acc NTRP Acc AP Acc RP Acc NTRP Acc AP Acc
BT Rally 0.9692 + 0.0016 0.5908 + 0.0054 0.9227 + 0.0022 0.9539 + 0.0038 0.6843 + 0.0069 0.9246 + 0.0020
BT Rally2 0.9538 + 0.0000 0.5919 + 0.0078 0.9106 + 0.0031 0.9458 +0.0038 0.6694 + 0.0157 0.9121 + 0.0049
NBT _Rally 0.8471 + 0.0082 0.5138 +0.0224 0.9162 + 0.0098 0.8631 + 0.0084 0.5894 +0.0115 0.9294 +0.0116
NBT _Rally2 0.8339 + 0.0068 0.5490 +0.0138 0.9284 + 0.0048 0.8550 +£0.0157 0.5894 + 0.0100 0.9379 + 0.0055

and out-of-distribution scenarios, we categorized the test instances into
two groups: in-distribution scenarios and out-of-distribution scenarios.
This classification is based on whether at least one player in the
rally was absent from the training set. The evaluation metrics include
rally-preference accuracy (RP Acc), non-terminal rally-preference ac-
curacy (NTRP Acc), and action-preference accuracy (AP Acc). These
metrics measure how well the learned reward models align with rally
preferences, non-terminal rally preferences, and action preferences,”
respectively. Table 4 presents the evaluation results, which include the
mean and standard deviation over three runs.

As illustrated in Table 4, the Bradley-Terry models (i.e., BT_Rally
and BT Rally2) demonstrate higher rally-preference accuracy com-
pared to the Normalized Bradley-Terry models (i.e., NBT Rally and
NBT Rally2). This result suggests that the difference in length be-
tween paired rallies does not significantly impact the performances
of the Bradley-Terry models. As rally preferences are viewed as the
primary preferences in this paper, BT Rally emerges as the optimal
configuration for the reward model. Obviously, the non-terminal rally-
preference accuracy is notably lower, indicating the challenge of align-
ing non-terminal rally preferences. Nevertheless, BT Rally achieves
high accuracy in rally-preference and action-preference under both in-
distribution (with averaged scores of 0.9692 and 0.9227, respectively)
and out-of-distribution scenarios (with averaged scores of 0.9539 and
0.9246, respectively), demonstrating its excellent generalization of
rally-preference alignment and action-preference alignment in the test
set.

As discussed in Section 1, traditional OPE methods aim to estimate
long-term returns. However, these methods lack guaranteed reliabil-
ity when neither real-world interaction nor simulator interaction is
available. Similarly, the preference-based reward model serves as an
estimator of the true reward. Nevertheless, its superior preference
generalization, as demonstrated in Table 4, provides a confidence coef-
ficient that supports our trust in this evaluation model. Therefore, we
use the reward function derived from the BT _Rally model to assess the
Offline RL policies in the following section. Additionally, the evaluation
results of a typical OPE algorithm (i.e., FQE (Le et al., 2019)) are
provided as reference results in Appendix B.2.

6.2.2. Offline RL

To evaluate the performance of the proposed method (CQL with
Hybrid Action Space), we compare it against several baselines adapted
for the hybrid action space. The selected baselines are as follows:

+ Decision Transformer (DT) with Original Goal: Decision Trans-
former (DT) (Chen et al., 2021) formulates Offline RL as a se-
quence modeling task by leveraging the powerful distribution
modeling capacity of transformer architectures (Vaswani et al.,
2017). It models the joint distribution of state, action, and reward
sequences and then conditions on historical states, actions, and
returns-to-go to generate subsequent actions. This baseline specif-
ically uses the original accumulated long-term rewards from the
dataset as the returns-to-go.

7 In a turn-based rally, if the terminal action results in scoring a point,
it is considered the most crucial decision in the rally. Consequently, action
preferences are established as a; > g; for i € [1,T — 1]; otherwise, the
preferences are a; > ar for i € [1,T — 1]. We introduced the action-preference
accuracy to evaluate the reward model more comprehensively.

* Decision Transformer (DT) with Winning Goal: This variant
replaces the original accumulated returns from the dataset with
a constant winning signal (a return of 1) as the expected returns-
to-go, representing the goal of winning the game.

Behavior Cloning (BC): Behavior Cloning (Pomerleau, 1988)
is a classical imitation learning method that learns a policy by
minimizing the discrepancy between predicted and demonstrated
actions in a supervised manner.

Sequence-based Behavior Cloning (BC): As an extension of
BC, this baseline utilizes a transformer architecture for sequence
modeling. Its formulation is similar to that of DT but does not
incorporate returns-to-go conditioning.

Detailed descriptions, network architectures, and hyperparameters for
the proposed method and all baselines are provided in Appendix A.2,
Appendix A.3, and Appendix A.4, respectively.

As discussed in Section 5.1, rather than estimating the long-term
return for policy evaluation, we employed the learned reward function
to assess the myopic optimality of the policy. Given that the BT Rally
model achieves the highest rally-preference accuracy, it is used to
estimate the average rewards of the learned policies. We also estimated
the average reward of the behavior policy to compare its performance
with that of the learned policies.

The test set includes both winning and losing rallies. To demonstrate
the performance of the policies in different scenarios, we estimated
the average rewards of the policies in winning rallies, losing rallies,
and integrated rallies, respectively. Furthermore, to assess policy gen-
eralization on out-of-distribution data, we categorized the test set into
in-distribution and out-of-distribution scenarios based on whether the
players had appeared in the training set. The results are presented in
Table 5.

As shown in Table 5, both CQL with Hybrid Action Space and the
baseline methods achieve higher average rewards than the behavior
policy in both integrated rallies and losing rallies. This indicates that
training AI models with winning rallies can effectively help generate
improved tactics for losing rallies. Notably, CQL with Hybrid Action
Space demonstrates optimal performance, underscoring its superiority
in enhancing the myopic optimality of tactical decisions. In winning
rallies, however, the behavior policy itself performs well, making it
difficult to surpass. Only CQL with Hybrid Action Space succeeds
noticeably in this regard, further demonstrating its ability to generate
tactics that exceed those present in the dataset. Additionally, given that
BC’s objective is to replicate dataset actions, its marginal performance
gain over the behavior policy merely confirms its effectiveness as a
supervised learning method for imitating winning behaviors. When
comparing in-distribution and out-of-distribution results, only a slight
performance degradation is observed, indicating strong generalization
capability on out-of-distribution data. Furthermore, in the comparison
between DT with Winning Goal and DT with Original Goal, the former
achieves a slightly higher average reward, highlighting the value of
winning condition modeling, though it does not perform as well as CQL
with Hybrid Action Space.

6.3. Discussions
6.3.1. Which types of tactical actions contribute to the rewards?

In this section, we aim to identify which types of tactical behav-
iors contribute to the rewards. To investigate this, we examine the



M. Liu et al.

Table 5
Average rewards of the learned policies.
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Policies In-distribution Scenarios

Out-of-distribution Scenarios

Integrated rallies Winning rallies

Losing rallies

Integrated rallies Winning rallies Losing rallies

Behavior Policy 0.7254 0.8460 0.6047 0.7273 0.8462 0.6439
CQL with Hybrid Action Space 0.8703 + 0.0786 0.8698 + 0.0757 0.8709 + 0.0815 0.8679 + 0.0873 0.8852 + 0.0685 0.8557 + 0.1006
DT with Winning Goal 0.8027 + 0.0046 0.7998 + 0.0042 0.8056 + 0.0050 0.7939 + 0.0046 0.7794 + 0.0090 0.8041 +0.0030
DT with Original Goal 0.7821 + 0.0049 0.7998 + 0.0042 0.7643 + 0.0060 0.7706 + 0.0054 0.7794 + 0.0090 0.7644 + 0.0046
BC 0.8482 + 0.0042 0.8473 + 0.0043 0.8492 + 0.0041 0.8581 + 0.0055 0.8498 + 0.0066 0.8638 + 0.0049
Sequence-based BC 0.7807 + 0.0042 0.7789 + 0.0052 0.7824 + 0.0033 0.7740 + 0.0037 0.7638 + 0.0089 0.7812 + 0.0024
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Fig. 4. Reward distributions across different tactical action
case.
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distribution of reward values across three scenarios: rally preference,
non-terminal rally preference, and action preference. For the rally-
preference scenario, we classify all tactical actions into two categories:
win and loss, based on whether the actions originate from winning
or losing rallies, and we compare the reward distributions between
these two categories. Similarly, in the non-terminal rally-preference
scenario, actions are also divided into win and loss, with the distinction
that terminal actions in turn-based rallies are excluded. In the action-
preference scenario, tactical actions are divided into three categories:
non-terminal actions, terminal actions in winning rallies, and terminal
actions in losing rallies. We then compare the reward distributions
across these three categories. The results are presented in Fig. 4.

From Fig. 4(c), we observe that the terminal actions in winning
rallies receive reward values close to 1, while the terminal actions in
losing rallies receive reward values near —1. The reward distribution
for non-terminal actions falls between these two extremes. This result
aligns with the intuition that when a terminal action results in scoring,
it is considered the most crucial tactical decision in the rally and should
receive the highest reward value. Conversely, when a terminal action
results in losing a point, it is deemed a poor tactical decision and should
receive a lower reward value. This type of reward distribution enables
the reward model to achieve high action-preference accuracy, as shown
in Table 4.

As illustrated in Fig. 4(b), the reward distributions for winning and
losing actions show no significant difference when terminal actions are
excluded. This contradicts the intuition that non-terminal actions from
a winning rally contribute more to the winning outcome than those
from a losing rally, even if they do not directly lead to victory, they at
least help the athlete gain initiative or advantages. However, this result
is consistent with the non-terminal rally-preference accuracy, which is
shown slightly above 0.6.

Finally, considering the rally-preference scenario, which includes
both non-terminal and terminal actions, the reward distributions of
winning actions and losing actions can be viewed as integrations of
the reward distribution of winning actions in the non-terminal rally-
preference scenario with the reward distribution of terminal-win ac-
tions in the action-preference scenario and the reward distribution of
losing actions in the non-terminal rally-preference scenario with the
reward distribution of terminal-loss actions in the action-preference

Action Category
(b)

categories. (a) Rally-preference case. (b)
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non_ternimal_actionternimal_win_actionternimal_loss_action

Action Category
(c)

Non-terminal rally-preference case. (c) Action-preference

loss_action

scenario, respectively. Consequently, the average reward for winning
actions is slightly higher than that for losing actions, as depicted in
Fig. 4(a).

6.3.2. Does the learned policies outperform the behavior policy when ex-
cluding the terminal actions?

Terminal actions are assigned extreme reward values, as illustrated
in Fig. 4(c). We are curious to see if the learned policies will continue to
achieve higher average rewards than the behavior policy when terminal
actions are excluded. To investigate this, we remove the terminal
actions and compare the average rewards across all policies. The results
are shown in Table 6.

Compared to the results in Table 5, the performance of the behavior
policy improves significantly in both integrated rallies and losing rallies
when terminal actions are excluded. However, no clear improvement
is observed in the performance of the learned policies. When terminal
actions are excluded, only CQL with Hybrid Action Space shows a
distinctly superior performance compared to the behavior policy. This
suggests that the policies derived from CQL with Hybrid Action Space
have the potential to enhance tactical decision-making earlier in the
rallies, beyond just the terminal decisions.

6.3.3. Does the learned policies outperform the behavior policy when ex-
cluding the out-of-bounds actions?

In the terminal step, only out-of-bounds actions result in losing a
point. As the terminal actions in losing rallies are assigned a negative
reward close to —1, out-of-bounds actions may also receive negative
rewards. We are curious to see if the learned policies will still achieve
higher average rewards than the behavior policy when out-of-bounds
actions are excluded. The average rewards, excluding out-of-bounds
actions, are reported in Table 7.

Compared to the results in Table 5, the performance of the be-
havior policy improves significantly in losing rallies, which in turn
enhances performance in integrated rallies. The average rewards of
all the learned policies, except for CQL with Hybrid Action Space, do
not show significant improvement. This suggests that these models are
not affected by out-of-bounds actions, as they have learned to land
the shuttle within the boundaries. Notably, the performance of CQL
with Hybrid Action Space shows a marked increase. Although this
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Table 6

Average rewards of the learned policies without terminal actions.
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Policies Integrated rallies Winning rallies Losing rallies
Behavior Policy 0.8402 0.8434 0.8369

CQL with Hybrid Action Space 0.8669 + 0.1001 0.8668 + 0.0970 0.8671 +0.1033
DT with Winning Goal 0.8019 + 0.0059 0.7979 + 0.0054 0.8059 + 0.0064
DT with Original Goal 0.7820 + 0.0060 0.7979 + 0.0054 0.7655 + 0.0073
BC 0.8480 + 0.0050 0.8453 +0.0051 0.8507 + 0.0049
Sequence-based BC 0.7803 + 0.0046 0.7780 + 0.0055 0.7826 + 0.0037

Table 7

Average rewards of the learned policies without out-of-bounds actions.

Policies Integrated rallies Winning rallies Losing rallies
Behavior Policy 0.8470 0.8532 0.8400
CQL with Hybrid Action Space 0.9312 + 0.0025 0.9300 + 0.0025 0.9324 + 0.0024
DT with Winning Goal 0.8024 + 0.0054 0.7992 + 0.0055 0.8056 + 0.0054
DT with Original Goal 0.7816 + 0.0059 0.7992 + 0.0055 0.7645 + 0.0068
BC 0.8490 + 0.0052 0.8475 + 0.0054 0.8506 + 0.0051
Sequence-based BC 0.7803 + 0.0049 0.7783 + 0.0060 0.7823 +0.0039
Table 8
Policy evaluation using domain metrics (': expecting high value; ‘: expecting low value).
Domain Metrics CQL with Hybrid Action Space DT with Winning Goal DT with Original Goal BC Sequence-based BC
Action Difference Rate' 0.6647 +0.0071 0.4886 +0.0011 0.4861 £ 0.0012 0.5006 + 0.0022 0.4876 + 0.0025
Rally Difference Rate! 0.8949 + 0.0094 0.8519 + 0.0022 0.8555 +0.0042 0.8580 + 0.0020 0.8559 + 0.0020
Irrational Shot Type Rate' 0.0080 +0.0138 0.0+0.0 0.0+ 0.0 0.0 +0.0 3.6e—5+62e—5
Active Shot Type Rate' 0.3526 + 0.0150 0.3015 £ 0.0050 0.2766 + 0.0045 0.3484 + 0.0089 0.2727 + 0.0037
Out-of-bounds Action Rate* 0.0317 + 0.0496 0.0002 £ 6.2¢ =5 0.0003 £ 6.2¢ -5 0.0+0.0 0.0001 =+ 0.0001
Average Distance of OLP' 0.3898 + 0.0176 0.2185 +0.0018 0.2199 +0.0018 0.2139 + 0.0013 0.2208 + 0.0029
Average Distance of PMP! 0.3467 +£0.0103 0.1666 + 0.0020 0.1722 + 0.0023 0.4093 + 0.0003 0.1717 £ 0.0015
Average Distance of CMP! 0.3430 +0.0172 0.1678 + 0.0017 0.1699 + 0.0014 0.1512 +0.0013 0.1673 +0.0013

Case 1

Case 2

@ Active player position @ Next movement position

@ Opponent position

% Shuttlecock landing position Q:% Recommended Shuttlecock landing position
—> Shot type taken by the active player ==% Recommended shot type

@ Recommended movement position

Shot type taken by the opponent

Fig. 5. Two illustrative examples of the tactics generated by CQL with Hybrid Action Space.

result indicates that the policy generated by this model may not strictly
adhere to the no-out-of-bounds constraint, it suggests that the policy
could further enhance tactical decision-making if we strictly enforce
the constraint to keep hits within bounds.

6.3.4. What types of tactical behaviors improve the performance of the
learned policy?

To find out which kinds of tactical elements contribute to the
enhanced performance, we defined a series of domain metrics and
used these metrics to assess the learned policies. The definitions of
the domain metrics are explained in Appendix B.1, and the results are
shown in Table 8.

As illustrated in Table 8, CQL with Hybrid Action Space emerges
as the optimal model shown in Table 5, achieving the highest value in
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the Active Shot Type Rate. This finding supports the intuitive under-
standing that players can seize the initiative by frequently employing
active shot types, such as smash and rush. Furthermore, in terms of the
Average Distance of OLP, this model also performs best, suggesting that
the policy derived by this model effectively mobilizes the opponent,
thereby maximizing the opponent’s energy expenditure. We believe
these two strengths are the key reasons why CQL with Hybrid Action
Space outperforms all other models in terms of average reward. This
underscores the importance of opponent mobilization and initiative es-
tablishment in badminton games. Additionally, CQL with Hybrid Action
Space achieves the highest Action Difference Rate and Rally Difference
Rate, indicating a greater potential to enhance the performance of the
behavior policy through the use of shot types that are different from
the behavior policy.
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It is crucial to ensure that the tactical policy avoids employing
irrational actions, as these may not be viable in real-world scenarios.
Although the policy derived from CQL with Hybrid Action Space might
occasionally resort to such irrational shot types, the frequency of these
occurrences is fortunately low. Similarly, out-of-bounds actions are not
desirable in badminton tactical decision-making, as it is viewed as a
fundamental strategic principle to be adhered. Nonetheless, CQL with
Hybrid Action Space still exhibits a slight probability of generating out-
of-bounds actions. Compared to other models that utilize supervised
learning,® CQL with Hybrid Action Space performs poorly in terms
of both the Irrational Shot Type Rate and the Out-of-bounds Action
Rate. This highlights the fact that supervised learning can more readily
develop policies that comply with strict constraints, while learning
through Bellman Bootstrapping poses greater challenges.

Additionally, the policy derived from CQL with Hybrid Action Space
leads to players covering greater average movement distances com-
pared to most other policies. Furthermore, the recommended move-
ment positions are significantly farther from the center of the court.
These behaviors could potentially increase players’ physical exertion
during real-world badminton matches. However, these drawbacks may
not be identified in an offline policy evaluation setting, as the offline
policy evaluation typically does not account for the physical execution
involved in playing badminton. As a result, CQL with Hybrid Action
Space can still achieve higher average rewards.

6.3.5. Case study

To illustrate the nature of the generated tactics, we present two
action rounds from the test set as case studies. Fig. 5 compares the
tactics generated by our CQL with Hybrid Action Space against the
original tactics observed in the dataset. In Case 1, the opponent plays
a “lob” to the left-bottom corner, and the original tactic of the active
player is to return a “clear” to the opponent’s back court. In contrast,
the Offline-RL model recommends a more aggressive “smash” in this
situation, a shot that would help the player seize and maintain the
initiative. In Case 2, while the Offline-RL model also recommends a
“net shot” in response to the opponent’s “defensive shot,” it specifies
a distinct landing position closer to the net. This tactical adjustment is
designed to force the opponent to move and enhance the threat level of
the net shot. Additionally, the model suggests the player move closer
to the net in preparation for a potential return of the net shot.

7. Limitations and future works

Although this work demonstrates the potential of Offline RL as a
tactical generator for badminton by adapting CQL for the hybrid action
space and utilizing a preference-based reward model, it remains a pre-
liminary exploration of Al-driven badminton tactical decision-making.
Its limitations and targeted future research directions are discussed as
follows:

» Myopic Policy Evaluation: In the absence of online interaction,
we employ the estimated average reward rather than the V-value
or Q-value for policy evaluation, which is inherently myopic.
This approach can only demonstrate that the policy generates a
one-step optimal tactical action, but not that it can produce a
long-term optimal tactical sequence. Although Section 5.1 dis-
cusses the practical value of the myopic optimal policy, our
ultimate objective remains to find a policy capable of recommend-
ing a tactical sequence that helps athletes win the rally. Therefore,
designing effective long-term policy evaluation methods is a key
focus for future work. We plan to explore novel OPE algorithms

8 As discussed in Section 4, both DT and BC are trained under the
paradigm of supervised learning, whereas CQL follows the reinforcement
learning format, updating its policy via Bellman Bootstrapping.
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capable of reliably assessing long-term policy performance, or
alternatively, to develop a physically simulated badminton en-
vironment, similar to Zhang et al. (2023a), for online policy
evaluation.

Preference Assumption: We assume that the winner’s tactical
decisions are superior to the loser’s within the same rally, based
on the general belief that better tactics lead to winning a point.
However, this assumption remains intuitive, and exceptions exist.
For instance, a player might be in a dominant position to win the
rally but suddenly makes a mistake, resulting in a loss. In such
cases, we cannot simply assign rally preference based solely on
the rally’s outcome.

Limited Training Data: The dataset used in this paper comprises
94 international matches, containing only the tactical decisions
of professional badminton athletes. Although our experimental
results show that the learned policy can generalize to unseen
professional players, its applicability to other scenarios, such as
amateur matches or players, remains unvalidated. Additionally,
the performance of Offline RL is highly dependent on the diversity
of the training data. While our dataset includes both winning
and losing rallies, these represent the tactical behaviors of pro-
fessional athletes, which can be considered expert or near-expert
level. Whether incorporating amateur match data would improve
policy performance requires further exploration. To address these
limitations, we plan to expand the dataset by incorporating a
wider variety of matches, particularly from amateur levels, and
to retrain the policy using the enriched data to analyze its im-
pact. In addition to offline training, we will also investigate the
potential of combining offline learning with online fine-tuning in
a badminton tactical simulator.

Lack of Exploration in Algorithm Advancement: The primary
contribution of our work lies in developing a pipeline that spans
from offline data processing to policy training and evaluation,
demonstrating Offline RL’s potential as a direct badminton tacti-
cal generator to enhance decision-making. Consequently, we have
compared CQL with Hybrid Action Space against only two other
types of algorithms, rather than all advanced Offline RL methods.
Additionally, we have not explored the performance ceiling that
this class of algorithms can achieve in this specific domain. To
address these limitations, future work will include comprehensive
comparisons with state-of-the-art Offline RL algorithms (e.g., the
hindsight self-supervision approach (Yu et al., 2023)) and investi-
gate novel algorithmic improvements to further enhance tactical
policy performance.

Lack of Real-world Validation: While the learned policy has
been quantitatively evaluated on the offline dataset, it lacks val-
idation in real-world scenarios. Such validation requires building
a real-time situation processing module to digitize current match
states for policy input and a visualization interface to convert tac-
tical recommendations into interpretable graphics for coaches and
athletes. Finally, integrating these components with the learned
policy for testing. We plan to develop this complete pipeline to
generate real-time tactical decisions, and subsequently invite pro-
fessional badminton coaches and players to evaluate our policy’s
practical utility through this system.

8. Conclusions

In this study, we investigated the use of Offline RL to enhance
tactical decision-making in badminton. A key innovation of our work
is the development of a preference-based reward model, which offers
an alternative to traditional offline policy evaluation methods. This
model emphasizes short-term utility, aligning with tactical preferences
to assess the effectiveness of learned tactical policies. Additionally, we
addressed the challenges of adapting existing Offline RL algorithms to
the hybrid action space inherent in badminton tactics. Our approach
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involved using the advanced method: CQL with Hybrid Action Space.
This method was tailored to meet the unique demands of badminton.
The experimental results demonstrate that all learned policies outper-
form the behavior policy, with CQL with Hybrid Action Space achieving
the highest average rewards. Although we only established the short-
term optimality of the policies derived from Offline RL, these results
highlight the potential to revolutionize sports strategy by leveraging
pre-collected datasets to develop effective tactical policies. This of-
fers promising insights for enhancing athletes’ tactical training and
recommendations in badminton and beyond.
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Appendix A. Algorithm details

A.1. Preference-based reward model

The estimated reward function 7, is modeled using a multilayer
perceptron (MLP) parametrized by y. Before the inputs s, and g, are
fed into the MLP network, we apply a linear embedding layer to process
these input features. Specifically, since the input features consist of two
types: shot type and position coordinates, we use two separate shared
embedding modules to embed the shot type and position coordinates,
respectively.

As discussed in Liu and Chen (2022), preference-based RL typically
involves three alternating steps: reward learning, policy optimization,
and query selection. In the query selection step, ensemble-based sam-
pling is a common and effective strategy to solicit preferences and
maximize the information gained. Although our focus is solely on the
reward learning step in an offline setting, we maintain the ensemble
strategy in this study. Specifically, we fit an ensemble of g reward func-
tions {7, ,....7, }, with each reward function trained on |D| preference
pairs sampled from the dataset D with replacement. We then average
these functions to obtain the final estimated reward.

We conducted a grid search to identify the optimal hyperparame-
ters. The complete list of hyperparameters explored can be found in
Table A.1. The code implementation of the reward model refers to
https://github.com/Wenminggong/PbRL_for PHRI.
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A.2. Conservative Q-learning with hybrid action space

We implemented CQL on top of the SAC algorithm. Basically, this
algorithm involves two kinds of important scalar factors: a?’ for adjust-
ing the conservative regulation term and «¢” for balancing the trade-off
between policy entropy and the reward. Both fixed and self-adjusting
scalar factors can be utilized, but we chose the automatic adjustment
scheme due to its flexibility. In the context of a hybrid action space,
af' and «f" represent the entropy scalar factors for the discrete and
continuous action components, respectively. We only need to specify
the initial values (i.e., ag"l s asg, and aﬁ[’)’) and the budget parameters
(i.e., bd, by and b¢"), after which the scalar factors automatically
adjust via dual gradient descent (Kumar et al., 2020; Haarnoja et al.,
2018).

Particularly, CQL employs log Y, exp(Q(s,a)) in the objective, as
shown in Eq. (11), to train the Q-function. According to Kumar et al.
(2020), this expression can be computed exactly in discrete action
domains. However, in continuous action domains, it requires impor-
tance sampling. Following this approach, we sample N action samples
from a uniform-at-random Unif(a) and N action samples from the
current policy x(a|s) at each state to perform importance sampling
in continuous action domains. The detailed computation process is
outlined below:

log )" exp(Q(s, )) = log / ) / exp(Q(s, @)

=log Y / exp(Q(s, @)))
ad I

1 exp(Q(s, a))
= IOg (_EaCN ni f(a¢ [——FF p ]
; 2 A~ Unif @ i f(ac)
1 exp(Q(s, a)) (A1)
+ EE”CN”(acls‘”d)[ r(atls,a?) D
N
1 exp(Q(s, a;))
~log ) (=— —
; 2N a;,NU;f(aE) Unif(a%)

Lo op(QGs,a)
TN afw(azg‘md)[ @ ls.at)

Additionally, the full list of CQL with Hybrid Action Space hyper-
parameters is provided in Table A.2. The implementation of CQL with
Hybrid Action Space refers to https://github.com/corl-team/CORL/
tree/main and https://github.com/nisheeth-golakiya/hybrid-sac/tree/

main.

A.3. Decision transformer

Unlike conventional RL algorithms such as temporal difference
(TD) learning, DT can perform credit assignment directly through self-
attention, enhancing its effectiveness in sparse-reward scenarios. To
enable transformers to learn meaningful patterns and conditionally
generate actions during testing, DT represents the trajectory as follows:

v =(Gy,51,a1,Gy, 89,0y, ...,Gp, ST, ar), (A.2)

where G, = Z,T,=, ry denotes the returns-to-go. This trajectory rep-
resentation allows us to train the model and generate new actions
through autoregression. The network architecture of the DT model is
illustrated in Fig. A.1. The inputs consist of the entire trajectory, while
the outputs are the subsequent actions. In this setting, the policy can be
denoted as #(q,|s,, G, a;,_1,5,_1,G,_y, ... ,ay, 51, G}). During training, the
objective is to minimize the difference between the action output by the
network and the action from the dataset, given the historical returns-to-
go, states, actions, and the current returns-to-go and state. Considering
the hybrid action space containing discrete stroke types and two kinds
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Table A.1
Hyperparameters of reward models.
Hyperparameters BT _Rally BT _Rally2 NBT _Rally NBT _Rally2
Batch size 512 512 512 256
Learning rate le—4 le—4 le—4 le—4
Max epochs 500 500 500 500
Random seed {0, 1,024, 2,024} {0, 1,024, 2,024} {0, 1,024, 2,024} {0, 1,024, 2,024}
Embedding dimension for shot type 15 15 15 15
Embedding dimension for position coordinates 10 10 10 10
Hidden layer dimension 512 256 256 256
Number of layers 5 3 3 3
Activate function of output layer tanh tanh tanh tanh
Reward ensemble size g 5 5 1 5
Preference scalar factor a,,, 0.5 0.5 0.5 0.5
Table A.2
Hyperparameters of CQL with Hybrid Action Space.

Hyperparameters Values

Batch size 256

Discount factor 0.99

Learning rate for the policy Se—17

Learning rate for the Q-function le—6

Random seed {0, 1,024, 2,024}

Hidden layer dimensions of the policy network and the Q-network 256

Number of layers of the policy network and the Q-network 3

Activate function Relu

Soft target Q-network update rate Se—3

Learning rate for the scalar factor a? le-5

The initial scalar factor al‘;"' e?

The budget parameter b°¢ 5.0

Learning rate for the scalar factor a®" 3e-5

The initial scalar factor aj’h’ 0.3

The budget parameter b¢' 0.1 x log(10)

The initial scalar factor o 0.3

The budget parameter 5" -2

Max training step le+5

Importance sampling number N 10

| Embedding + Positional Encoding

W —
) ) )
G

Fig. A.1. The architecture of DT.

of continuous two-dimensional coordinates, we decomposed the policy
similarly to Eq. (13):

w(a,ls,, Gy a,_1,5,.1,.G_1,...,a1,51,Gy) =

d
n(ay |5, Gyy a1, 8,21, Gy_ys .-, 01,51, Gy) (A.3)
d
X w(a;|s;, G ap_y, 821, Gy_1, -, ay, 51, Gy, af).

We use a multi-head neural network as the output layer of the model
to separately output discrete and continuous actions. The outputs of the
discrete actions are the probabilities of 10 stroke types
7@ 151, Gy a1, 5121, Gr_s - ray, 51, Gy) € [0, 11, where Y10 z(al'| ) =
1. We use a cross-entropy loss as the objective function of the discrete
actions:

10

d d;
T@) =By Gy 511Gyt Gy ~Dl= Dy ¥1108 Tga (@]
i=1

A4

)]
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where y; € {0,1} is the label of discrete action. Additionally, two con-
tinuous coordinate distributions on two-dimensional planes are used
to output the continuous landing and movement positions, with the
network trained using log-likelihood.

J(¢1pﬂ) = ]Elpp,hfr’cr,“r—l’xx-],Gr—l,.._,al,Sl,GIND[_ log ”¢I"P (lpp»fl =)l (A'S)
J(d)mpp) = Empp,r--‘tscnﬂx—l 811Gy 15..,a1,51,G ~pl— log T g™rp (mpp-fl =] (A6)
The final objective is the sum of the above three objectives:

T(@) = J(@N) + J(@'Pr) + T (¢""). (A7)

The DT model is based on the Transformer architecture (Vaswani
et al., 2017), which is highly effective for modeling sequential data.
In our work, we utilized the GPT model, specifically GPT-2 (Radford
et al.,, 2018), as the backbone for the DT network. GPT-2 adapts
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Table A.3

Hyperparameters of DT.
Hyperparameters Values
Batch size 128
Learning rate le—6
Weight decay rate le—3
Random seed {0, 1,024, 2,024}
Hidden layer dimension 512
Embedding dimension 64
Number of hidden layers in the Transformer encoder 3
Number of attention heads for each attention layer in the Transformer encoder 2
Activate function Relu
Dropout 0.1
Warm-up steps le+4
Max iteration steps 200
Training steps of each interaction 500

the Transformer architecture by incorporating a causal self-attention
mask, allowing for auto-regressive generation. Additionally, we per-
formed a grid search to identify the optimal hyperparameters. A com-
prehensive list of these hyperparameters is provided in Table A.3.
The implementation of DT refers to https://github.com/kzl/decision-
transformer.

A.4. Behavior cloning

Typically, BC is applied to decision-making problems where the goal
is to generate effective actions, whereas supervised learning is generally
used for prediction tasks to align outputs with given labels. Specifically,
given a training dataset with expected action labels D = {(s,a)}, the
objective of BC is to minimize the following function:

T =Egarnl5a— a2l )

where 4 denotes the action generated by the network (e.g., & =
arg max 7r¢(a’|s)). As discussed in Section 4, when dealing with a
hybrid action space, the policy can be decomposed into a discrete
component and two continuous components. The objectives for these
components are constructed using cross-entropy loss and log-likelihood,
respectively. Consequently, the practical objective optimized by BC is
as follows:

10
J(@) =B, pl= Y yi10g 74 (@ |s)] + By 1 _pl=10g 75, Ippls))]

i=1 "

+ ]ES;J"PNND[_ log 7 ymep (mpy, ;|51 (A.9)

In addition, we introduce a variant of BC in this paper, called
Sequence-based BC, which leverages the powerful sequence modeling
capabilities of the transformer model. The objective of Sequence-based
BC is similar to that of DT, with the exception that it does not include
returns-to-go conditioning, as follows:

10
d;
J@) =Ky o ,..ra~pl= X, vilog mya(a"| )]+

i=1

(A.10)
]Elpp',,s,,...,sl a ~pl—log T ylrp (Ipp,tl )]

+ Empp',.x,,“.,sl,u1~D[_ log T pmpp (mpp,t [ -]

The network architectures for both BC and Sequence-based BC are
illustrated in Fig. A.2.

The BC model and the Sequence-based BC model are built upon an
MLP network and a GPT-2 model, respectively. The hyperparameters
for these models are detailed in Tables A.4 and A.5.
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Table A.4
Hyperparameters of BC.
Hyperparameters Values
Batch size 256
Learning rate le—6
Random seed {0, 1,024, 2,024}
Hidden layer dimension 256

Number of layers 3
Activate function Relu
Max training step le+5

Appendix B. Additional experimental settings and results

B.1. Domain metrics description

All the used domain metrics are defined as follows:

Action Difference Rate: To quantify the difference between the
shot types used in the learned policies and those used in the
behavior policy, we calculate the proportion of differing shot
types. This is expressed as:

|D| ! _
X stF =517}
|D|
where |D| represents the total number of actions, and =’ and g

denote the learned policy and the behavior policy, respectively.
]I{stl’.[/ = stfﬂ } = 1 if the shot types used are same (i.e., stf’ = st:r”).

Action Difference Rate = (B.1)

Rally Difference Rate: In addition to the Action Difference Rate,
we calculate the proportion of rallies that differ. A rally consists of
multiple actions, and if there is any difference in shot type within
a rally, the entire rally is considered different. This is expressed
as:

DI, ! _ s
IR =R

Rally Difference Rate = ] ) (B.2)
r

where |D|, represents the total number of rallies.

Irrational Shot Type Rate: In badminton tactical

decision-making, a player needs to choose an appropriate action
based on their opponent’s action. Only certain shot types are
considered reasonable responses for a given shot type executed by
the opponent. For instance, if the opponent executes a smash, it
is generally not reasonable for the player to return with a smash.
To identify irrational shot actions, we measured the frequency of
shot type pairs, consisting of the opponent’s shot type and the
player’s response, within the dataset. The results are presented in
Fig. B.1. We use a threshold frequency k to mitigate the impact
of errors. If the frequency of a shot-type pair exceeds k, it is
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Fig. A.2. (a) The architecture of BC. (b) The architecture of Sequence-based BC.
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Fig. B.1. The frequency of shot type pairs.
Table A.5
Hyperparameters of Sequence-based BC.
Hyperparameters Values
Batch size 128
Learning rate le-6
Weight decay rate le-3
Random seed {0, 1,024, 2,024}
Hidden layer dimension 512
Embedding dimension 32
Number of hidden layers in the Transformer encoder 3
Number of attention heads for each attention layer in the Transformer encoder 2
Activate function Relu
Dropout 0.1
Warm-up steps let+4
Max iteration steps 200
Training steps of each interaction 500
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Table B.1
Average Q-values of the learned policies estimated by FQE.

Policies

CQL with Hybrid Action Space
DT with Winning Goal

DT with Original Goal

BC

Sequence-based BC

Average Q-values'

—-0.2206 + 0.0192
—1.0415 £ 0.0442
—1.0467 £ 0.0190
—0.7355 £ 0.0570
—0.8367 + 0.0094

considered a reasonable situation. The irrational shot type rate
is then calculated as follows:

T st € Trea)
ID| ’
where T,,, denotes the set of reasonable shot types. In this study,
we empirically set k = 10.
Active Shot Type Rate: Among all the shot types listed in Table
1, we identify push/rush, smash, and drop as active shot types
that can help athletes gain the initiative. We calculate the rate
at which these active shot types are used by the learned policies
using the following formula:

Irrational Shot Type Rate = (B.3)

T st € Taive)
D '
where T,.,. = {push/rush,smash,drop} represents the set of
active shot types.
Out-of-bounds Action Rate: Avoiding hitting the shuttle out of
bounds is a fundamental tactical strategy that must be adhered to.
We calculated the percentage of instances where the learned poli-
cies resulted in out-of-bounds shots using the following formula:

Active Shot Type Rate = (B.4)

P e L)

DI ’
where L, denotes the set of out-of-bounds actions.
Average Distance between Opponent’s Position and Land-
ing Position (Average Distance of OLP): Commonly, effectively
mobilizing the opponent is a key strategy in badminton. This mo-
bilization can be partially measured by the distance between the
opponent’s position and the shuttle’s landing position. Therefore,
we calculate the average distance between these two points.
Average Distance between Player’s Position and Movement
Position (Average Distance of PMP): As the distance traveled
increases, so does the athlete’s physical exertion. Intuitively, min-
imizing the distance traveled during a game helps conserve en-
ergy. Therefore, we calculate the average distance between the
player’s current position and their next movement position.
Average Distance between Court Center and Movement Posi-
tion (Average Distance of CMP): Positioning oneself near the
center of a badminton half-court aids players in covering the
entire court effectively. To evaluate how close the next movement
position determined by the learned policy is to the center of the
half-court, we calculated the average distance between the court
center and the movement position.

Out-of-bounds Action Rate = (B.5)

B.2. Offline policy evaluation via FQE

We utilized FQE (Le et al., 2019), a widely adopted offline policy
evaluation method, to estimate the average Q-value for each learned
policy. The results are presented in Table B.1. It is evident that CQL
with Hybrid Action Space outperforms the other models, aligning with
the findings displayed in Table 5.
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Data availability

Data will be made available on request.
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